Source code documentation: WAVIX
Manual pages overview and cross references

Autogenerated on: 19-Sep-2010


Entry point

ApplicationRoot>WavixIV>wavix.m

Table of contents

ApplicationRoot>WavixIV>build.m
ApplicationRoot>WavixIV>exetimestamp_wavix.m
ApplicationRoot>WavixIV>test.m
ApplicationRoot>WavixIV>wavix.m
ApplicationRoot>WavixIV>wavixshowdata.m
ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>WavixIV>neural501>addnntemppath.m
ApplicationRoot>WavixIV>neural501>boiler_net.m
ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>boiler_process.m
ApplicationRoot>WavixIV>neural501>boiler_transfer.m
ApplicationRoot>WavixIV>neural501>boiler_weight.m
ApplicationRoot>WavixIV>neural501>boxdist.m
ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calca1.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calce1.m
ApplicationRoot>WavixIV>neural501>calcerr.m
ApplicationRoot>WavixIV>neural501>calcfdot.m
ApplicationRoot>WavixIV>neural501>calcgbtt.m
ApplicationRoot>WavixIV>neural501>calcgfp.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcjejj.m
ApplicationRoot>WavixIV>neural501>calcjx.m
ApplicationRoot>WavixIV>neural501>calcjxbt.m
ApplicationRoot>WavixIV>neural501>calcjxfp.m
ApplicationRoot>WavixIV>neural501>calcpd.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>combvec.m
ApplicationRoot>WavixIV>neural501>compet.m
ApplicationRoot>WavixIV>neural501>competsl.m
ApplicationRoot>WavixIV>neural501>con2seq.m
ApplicationRoot>WavixIV>neural501>concur.m
ApplicationRoot>WavixIV>neural501>convwf.m
ApplicationRoot>WavixIV>neural501>dist.m
ApplicationRoot>WavixIV>neural501>dividevec.m
ApplicationRoot>WavixIV>neural501>dnullpf.m
ApplicationRoot>WavixIV>neural501>dnulltf.m
ApplicationRoot>WavixIV>neural501>dnullwf.m
ApplicationRoot>WavixIV>neural501>dotprod.m
ApplicationRoot>WavixIV>neural501>errsurf.m
ApplicationRoot>WavixIV>neural501>fixunknowns.m
ApplicationRoot>WavixIV>neural501>formgx.m
ApplicationRoot>WavixIV>neural501>formx.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>gridtop.m
ApplicationRoot>WavixIV>neural501>hardlim.m
ApplicationRoot>WavixIV>neural501>hardlims.m
ApplicationRoot>WavixIV>neural501>hextop.m
ApplicationRoot>WavixIV>neural501>hintonw.m
ApplicationRoot>WavixIV>neural501>hintonwb.m
ApplicationRoot>WavixIV>neural501>ind2vec.m
ApplicationRoot>WavixIV>neural501>initcon.m
ApplicationRoot>WavixIV>neural501>initlay.m
ApplicationRoot>WavixIV>neural501>initnw.m
ApplicationRoot>WavixIV>neural501>initwb.m
ApplicationRoot>WavixIV>neural501>initzero.m
ApplicationRoot>WavixIV>neural501>learncon.m
ApplicationRoot>WavixIV>neural501>learngd.m
ApplicationRoot>WavixIV>neural501>learngdm.m
ApplicationRoot>WavixIV>neural501>learnh.m
ApplicationRoot>WavixIV>neural501>learnhd.m
ApplicationRoot>WavixIV>neural501>learnis.m
ApplicationRoot>WavixIV>neural501>learnk.m
ApplicationRoot>WavixIV>neural501>learnlv1.m
ApplicationRoot>WavixIV>neural501>learnlv2.m
ApplicationRoot>WavixIV>neural501>learnos.m
ApplicationRoot>WavixIV>neural501>learnp.m
ApplicationRoot>WavixIV>neural501>learnpn.m
ApplicationRoot>WavixIV>neural501>learnsom.m
ApplicationRoot>WavixIV>neural501>learnwh.m
ApplicationRoot>WavixIV>neural501>linkdist.m
ApplicationRoot>WavixIV>neural501>logsig.m
ApplicationRoot>WavixIV>neural501>mae.m
ApplicationRoot>WavixIV>neural501>mandist.m
ApplicationRoot>WavixIV>neural501>mapminmax.m
ApplicationRoot>WavixIV>neural501>mapstd.m
ApplicationRoot>WavixIV>neural501>maxlinlr.m
ApplicationRoot>WavixIV>neural501>midpoint.m
ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>mse.m
ApplicationRoot>WavixIV>neural501>msereg.m
ApplicationRoot>WavixIV>neural501>mseregec.m
ApplicationRoot>WavixIV>neural501>negdist.m
ApplicationRoot>WavixIV>neural501>netinv.m
ApplicationRoot>WavixIV>neural501>netprod.m
ApplicationRoot>WavixIV>neural501>netsum.m
ApplicationRoot>WavixIV>neural501>newc.m
ApplicationRoot>WavixIV>neural501>newcf.m
ApplicationRoot>WavixIV>neural501>newdtdnn.m
ApplicationRoot>WavixIV>neural501>newelm.m
ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newfftd.m
ApplicationRoot>WavixIV>neural501>newgrnn.m
ApplicationRoot>WavixIV>neural501>newhop.m
ApplicationRoot>WavixIV>neural501>newlin.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>newlrn.m
ApplicationRoot>WavixIV>neural501>newlvq.m
ApplicationRoot>WavixIV>neural501>newnarx.m
ApplicationRoot>WavixIV>neural501>newnarxsp.m
ApplicationRoot>WavixIV>neural501>newnet.m
ApplicationRoot>WavixIV>neural501>newp.m
ApplicationRoot>WavixIV>neural501>newpnn.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m
ApplicationRoot>WavixIV>neural501>newsom.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>nncell2string.m
ApplicationRoot>WavixIV>neural501>nncheckdata.m
ApplicationRoot>WavixIV>neural501>nncheckpt.m
ApplicationRoot>WavixIV>neural501>nncopy.m
ApplicationRoot>WavixIV>neural501>nnetbhelp.m
ApplicationRoot>WavixIV>neural501>nnguitools.m
ApplicationRoot>WavixIV>neural501>nnisdata.m
ApplicationRoot>WavixIV>neural501>nnmat2string.m
ApplicationRoot>WavixIV>neural501>nnpackdata.m
ApplicationRoot>WavixIV>neural501>nnt2c.m
ApplicationRoot>WavixIV>neural501>nnt2elm.m
ApplicationRoot>WavixIV>neural501>nnt2ff.m
ApplicationRoot>WavixIV>neural501>nnt2hop.m
ApplicationRoot>WavixIV>neural501>nnt2lin.m
ApplicationRoot>WavixIV>neural501>nnt2lvq.m
ApplicationRoot>WavixIV>neural501>nnt2p.m
ApplicationRoot>WavixIV>neural501>nnt2rb.m
ApplicationRoot>WavixIV>neural501>nnt2som.m
ApplicationRoot>WavixIV>neural501>nnt_fpc2s.m
ApplicationRoot>WavixIV>neural501>nntobsf.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ApplicationRoot>WavixIV>neural501>nntwarn.m
ApplicationRoot>WavixIV>neural501>nnunpackdata.m
ApplicationRoot>WavixIV>neural501>normc.m
ApplicationRoot>WavixIV>neural501>normprod.m
ApplicationRoot>WavixIV>neural501>normr.m
ApplicationRoot>WavixIV>neural501>nullpf.m
ApplicationRoot>WavixIV>neural501>pause2.m
ApplicationRoot>WavixIV>neural501>plotbr.m
ApplicationRoot>WavixIV>neural501>plotep.m
ApplicationRoot>WavixIV>neural501>plotes.m
ApplicationRoot>WavixIV>neural501>plotpc.m
ApplicationRoot>WavixIV>neural501>plotpv.m
ApplicationRoot>WavixIV>neural501>plotsom.m
ApplicationRoot>WavixIV>neural501>plotv.m
ApplicationRoot>WavixIV>neural501>plotvec.m
ApplicationRoot>WavixIV>neural501>pnormc.m
ApplicationRoot>WavixIV>neural501>poslin.m
ApplicationRoot>WavixIV>neural501>postreg.m
ApplicationRoot>WavixIV>neural501>processpca.m
ApplicationRoot>WavixIV>neural501>purelin.m
ApplicationRoot>WavixIV>neural501>quant.m
ApplicationRoot>WavixIV>neural501>radbas.m
ApplicationRoot>WavixIV>neural501>randnc.m
ApplicationRoot>WavixIV>neural501>randnr.m
ApplicationRoot>WavixIV>neural501>rands.m
ApplicationRoot>WavixIV>neural501>randtop.m
ApplicationRoot>WavixIV>neural501>removeconstantrows.m
ApplicationRoot>WavixIV>neural501>removerows.m
ApplicationRoot>WavixIV>neural501>satlin.m
ApplicationRoot>WavixIV>neural501>satlins.m
ApplicationRoot>WavixIV>neural501>scalprod.m
ApplicationRoot>WavixIV>neural501>seq2con.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>WavixIV>neural501>slblocks.m
ApplicationRoot>WavixIV>neural501>softmax.m
ApplicationRoot>WavixIV>neural501>sp2narx.m
ApplicationRoot>WavixIV>neural501>srchbac.m
ApplicationRoot>WavixIV>neural501>srchbre.m
ApplicationRoot>WavixIV>neural501>srchcha.m
ApplicationRoot>WavixIV>neural501>srchgol.m
ApplicationRoot>WavixIV>neural501>srchhyb.m
ApplicationRoot>WavixIV>neural501>sse.m
ApplicationRoot>WavixIV>neural501>substring.m
ApplicationRoot>WavixIV>neural501>tansig.m
ApplicationRoot>WavixIV>neural501>template_init_layer.m
ApplicationRoot>WavixIV>neural501>template_init_network.m
ApplicationRoot>WavixIV>neural501>template_init_wb.m
ApplicationRoot>WavixIV>neural501>template_learn.m
ApplicationRoot>WavixIV>neural501>template_net_input.m
ApplicationRoot>WavixIV>neural501>template_new_network.m
ApplicationRoot>WavixIV>neural501>template_performance.m
ApplicationRoot>WavixIV>neural501>template_process.m
ApplicationRoot>WavixIV>neural501>template_search.m
ApplicationRoot>WavixIV>neural501>template_topology.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>template_transfer.m
ApplicationRoot>WavixIV>neural501>template_weight.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trains.m
ApplicationRoot>WavixIV>neural501>trainscg.m
ApplicationRoot>WavixIV>neural501>tribas.m
ApplicationRoot>WavixIV>neural501>updatenet.m
ApplicationRoot>WavixIV>neural501>vec2ind.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ModelitUtilRoot>ANY2WGS.m
ModelitUtilRoot>ComposeDirList.m
ModelitUtilRoot>aggBins.m
ModelitUtilRoot>asciiedit.m
ModelitUtilRoot>assertm.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>c.m
ModelitUtilRoot>cell2hashtable.m
ModelitUtilRoot>centralpos.m
ModelitUtilRoot>chararray2char.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>date_ax.m
ModelitUtilRoot>datenum2java.m
ModelitUtilRoot>datetick_eu.m
ModelitUtilRoot>debugline.m
ModelitUtilRoot>decomment_line.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>evalCallback.m
ModelitUtilRoot>exetimestamp_create.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>findstructure.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getFigureClientBase.m
ModelitUtilRoot>getMatlabVersion.m
ModelitUtilRoot>getRemoteFile.m
ModelitUtilRoot>getRoot.m
ModelitUtilRoot>getRootPane.m
ModelitUtilRoot>get_c_default.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>getoptions.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>getyear.m
ModelitUtilRoot>hashtable2cell.m
ModelitUtilRoot>height.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>installPackage.m
ModelitUtilRoot>installjar.m
ModelitUtilRoot>is_eq.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_eq.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>istable.m
ModelitUtilRoot>javahandle.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>loadnnpackage.m
ModelitUtilRoot>makeCharCell.mexw32
ModelitUtilRoot>mbd_restore.m
ModelitUtilRoot>mbd_suspend.m
ModelitUtilRoot>mbdlabel.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>mbdparsevalue.m
ModelitUtilRoot>mexprint.m
ModelitUtilRoot>movegui_align.m
ModelitUtilRoot>msg_temp.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>name.m
ModelitUtilRoot>offon.m
ModelitUtilRoot>patchvalue.m
ModelitUtilRoot>pathcomplete.m
ModelitUtilRoot>pcolorBar.m
ModelitUtilRoot>pcolorPlot.m
ModelitUtilRoot>points2pixels.m
ModelitUtilRoot>postcode2pos.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>pshape.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>rbline.m
ModelitUtilRoot>rbline2.m
ModelitUtilRoot>readComments.m
ModelitUtilRoot>readcell.m
ModelitUtilRoot>readstr.m
ModelitUtilRoot>real2str.m
ModelitUtilRoot>rightalign.m
ModelitUtilRoot>rmfiles.m
ModelitUtilRoot>row_is_in.m
ModelitUtilRoot>runlength.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>setMouseWheel.m
ModelitUtilRoot>setPassive.m
ModelitUtilRoot>setProxy.m
ModelitUtilRoot>seticon.m
ModelitUtilRoot>shiftup.m
ModelitUtilRoot>slashpad.m
ModelitUtilRoot>stopwaitbar.m
ModelitUtilRoot>str2fieldname.m
ModelitUtilRoot>strcol.m
ModelitUtilRoot>struct2cellstr.m
ModelitUtilRoot>struct2char.m
ModelitUtilRoot>struct2str.m
ModelitUtilRoot>struct2treemodel.m
ModelitUtilRoot>struct2varargin.m
ModelitUtilRoot>strvscat.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>ticpeval.m
ModelitUtilRoot>toStr.m
ModelitUtilRoot>tocp.m
ModelitUtilRoot>transact_gui.m
ModelitUtilRoot>transact_update.m
ModelitUtilRoot>truecolor.m
ModelitUtilRoot>uigetfolder.m
ModelitUtilRoot>uigetfolder_win32.dll
ModelitUtilRoot>urlproxyread.m
ModelitUtilRoot>utilspath.m
ModelitUtilRoot>validval.m
ModelitUtilRoot>varargin2struct.m
ModelitUtilRoot>varsize.m
ModelitUtilRoot>width.m
ModelitUtilRoot>windowpos.m
ModelitUtilRoot>windowposV7.m
ModelitUtilRoot>wrclean.m
ModelitUtilRoot>writestr.m
ModelitUtilRoot>zoomtool.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>MBDresizedir>isparentframe.m
ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframecontent.m
ModelitUtilRoot>MBDresizedir>mbd_initialize_axis.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>MBDresizedir>mbdinnerpixelsize.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdlinkslider2frame.m
ModelitUtilRoot>MBDresizedir>mbdpatchprops.m
ModelitUtilRoot>MBDresizedir>mbdpixelsize.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>MBDresizedir>mbdsortframes.m
ModelitUtilRoot>MBDresizedir>ur_getframechildren.m
ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_childframes.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_deleteframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_doubleframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_exitbutton.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_initaxes.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkslider2frame.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_set.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_sortframes.m
ModelitUtilRoot>PublicFiles>addprefModelit.m
ModelitUtilRoot>PublicFiles>getprefModelit.m
ModelitUtilRoot>PublicFiles>isprefModelit.m
ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>PublicFiles>prefutilsModelit.m
ModelitUtilRoot>PublicFiles>rootpath.m
ModelitUtilRoot>PublicFiles>setprefModelit.m
ModelitUtilRoot>RWSnat>CrdCnv.m
ModelitUtilRoot>RWSnat>crdcnv_mex.dll
ModelitUtilRoot>diaroutines>ComposeDiaList.m
ModelitUtilRoot>diaroutines>bepaal_tijdstap.m
ModelitUtilRoot>diaroutines>checkRKS.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>combineRKS.m
ModelitUtilRoot>diaroutines>datenum2long.m
ModelitUtilRoot>diaroutines>defaultdia.m
ModelitUtilRoot>diaroutines>dia_merge.m
ModelitUtilRoot>diaroutines>dimspecs.m
ModelitUtilRoot>diaroutines>displayStations.m
ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>emptyRKS.m
ModelitUtilRoot>diaroutines>emptyW3H.m
ModelitUtilRoot>diaroutines>emptyWRD.m
ModelitUtilRoot>diaroutines>emptyblok.m
ModelitUtilRoot>diaroutines>emptydia.m
ModelitUtilRoot>diaroutines>interp_blok.m
ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>diaroutines>readdia_mex.mexw32
ModelitUtilRoot>diaroutines>set_taxis.m
ModelitUtilRoot>diaroutines>splitlongdate.m
ModelitUtilRoot>diaroutines>writedia_R14.m
ModelitUtilRoot>diaroutines>writedia_mex.mexw32
ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>expandAll.m
ModelitUtilRoot>jacontrol>findNode.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>jacontrol>jatypes.m
ModelitUtilRoot>jacontrol>matlab2javadateformat.m
ModelitUtilRoot>jacontrol>node2treepath.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>retrieve.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undomenu.m
ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>view.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_initupd.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_look4change.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_mastertree.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>table>structarray2table.m
ModelitUtilRoot>table>tableRead.m
ModelitUtilRoot>table>tableheight.m
ModelitUtilRoot>table>tableselect.m
ModelitUtilRoot>xml_toolbox>serializeDOM.m
ModelitUtilRoot>xml_toolbox>struct2xmlobj.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m
ApplicationRoot>wavixIV>CONHOP>ChainRule.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m
ApplicationRoot>wavixIV>CONHOP>SimulNN.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>CONHOP>TestVars.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>CONHOP>dispdump.m
ApplicationRoot>wavixIV>CONHOP>matgetvar2.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>DATABEHEER>extend_time.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m
ApplicationRoot>wavixIV>DATABEHEER>listRKS.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>DATABEHEER>set_hiaat.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyud.m
ApplicationRoot>wavixIV>HOOFDSCHERM>getwgbname.m
ApplicationRoot>wavixIV>HOOFDSCHERM>linepatch.m
ApplicationRoot>wavixIV>HOOFDSCHERM>linestyle_wavix.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>setwgbname.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComposeNetworkList.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2donstat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2type.m
ApplicationRoot>wavixIV>HULPFUNCTIES>classify.m
ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>donstat2binstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HULPFUNCTIES>fieldnameprint.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_databeheer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_regressiebeheer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>invoer2string.m
ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m
ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>reeksaanduiding.m
ApplicationRoot>wavixIV>HULPFUNCTIES>separatestr.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>uitvoer2string.m
ApplicationRoot>wavixIV>HULPFUNCTIES>view_help.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m
ApplicationRoot>wavixIV>MONITOR>get_opt_monitor.m
ApplicationRoot>wavixIV>MONITOR>get_opt_monitorgraph.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>accessnode.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>NETWERKBEHEER>gettree.m
ApplicationRoot>wavixIV>NETWERKBEHEER>hinton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>nwbhconstants.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>showbar.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>GetSensorMatrix.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildmatstring.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildpopupstring.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>timeshift.m

ApplicationRoot>WavixIV>build.m

(back to table of contents)
 delete debug utils from path

Path:

ApplicationRoot\WavixIV

Last modified:

13-Feb-2009 14:24:45

Size:

618 bytes

Calls functions:

ModelitUtilRoot>exetimestamp_create.m
ModelitUtilRoot>installPackage.m
ModelitUtilRoot>wrclean.m

Is called by functions:

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)

ApplicationRoot>WavixIV>exetimestamp_wavix.m

(back to table of contents)
 This file has been generated automatically by function exetimestamp_create

Path:

ApplicationRoot\WavixIV

Last modified:

13-Feb-2009 14:24:50

Size:

401 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)

ApplicationRoot>WavixIV>test.m

(back to table of contents)

Path:

ApplicationRoot\WavixIV

Last modified:

11-Mar-2009 05:34:58

Size:

327 bytes

Calls functions:

ModelitUtilRoot>matlabguru>store.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)
  wavix - hoofdprogramma van de wavixIV applicatie, 
          installeert het wavix scherm of voert batchjob uit
  
  CALL:
   wavix(func, varargin)
 
  INPUT:
   func: <string> met in batch mode uit te voeren functie,
                  mogelijke waarden:
                  'matroos2dia' 
  
  OUTPUT:
   geen directe uitvoer, het wavix scherm wordt geopend 
 
  See also: wavixmain

Path:

ApplicationRoot\WavixIV

Last modified:

18-Sep-2010 18:38:03

Size:

1867 bytes

Calls functions:

ApplicationRoot>WavixIV>build.m
ApplicationRoot>WavixIV>exetimestamp_wavix.m
ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>readComments.m
ModelitUtilRoot>seticon.m
ModelitUtilRoot>strvscat.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m

(back to table of contents)

ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)
  wavixshowdata - Visualisatie van ALLE data in wavix 
 
  CALL:
   stormnetshowdata(signature,udnew,ind)
 
  INPUT:
   signature: <
   udnew:     <undoredo object> met de centrale database
   ind:       <cell array> een CELL array met
                 struct arrays met velden
                        'type'
                        'subs'
 
  OUTPUT:
   geen directe uitvoer, alle objecten die gerelateerd zijn aan data in het
                         werkgebied worden geactualiseerd.
  

Path:

ApplicationRoot\WavixIV

Last modified:

14-Oct-2007 19:16:48

Size:

2553 bytes

Calls functions:

ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_databeheer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m
ApplicationRoot>wavixIV>MONITOR>get_opt_monitor.m
ApplicationRoot>wavixIV>MONITOR>get_opt_monitorgraph.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m

(back to table of contents)

ApplicationRoot>WavixIV>wavixshowopts.m

(back to table of contents)
  wavixshowopts - Visualisatie van ALLE opties in wavix
 
  CALL:
   wavixshowopts(signature,udnew,ind)
 
  INPUT:
   signature:
   udnew: structure met data uit werkgebied
   ind: een CELL array met
                 struct arrays met velden
                        'type'
                        'subs'
 
  OUTPUT:
   geen directe uitvoer, alle objecten die gerelateerd zijn aan data in het
                         werkgebied worden geactualiseerd.
  

Path:

ApplicationRoot\WavixIV

Last modified:

14-Oct-2007 19:36:26

Size:

1589 bytes

Calls functions:

ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>evaldepend.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>addnntemppath.m

(back to table of contents)
 ADDNNTEMPPATH Add NNT temporary directory to path.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:19:16

Size:

443 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boiler_net.m

(back to table of contents)
 BOILER_NET Boilerplate script for net input functions.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:12

Size:

2057 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nnt_fpc2s.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ModelitUtilRoot>name.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>netprod.m
ApplicationRoot>WavixIV>neural501>netsum.m
ApplicationRoot>WavixIV>neural501>template_net_input.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boiler_perform.m

(back to table of contents)
  BOILER_PERFORM Boilerplate code for performance functions.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:14

Size:

4507 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ModelitUtilRoot>c.m
ModelitUtilRoot>name.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>mae.m
ApplicationRoot>WavixIV>neural501>mse.m
ApplicationRoot>WavixIV>neural501>msereg.m
ApplicationRoot>WavixIV>neural501>mseregec.m
ApplicationRoot>WavixIV>neural501>nullpf.m
ApplicationRoot>WavixIV>neural501>sse.m
ApplicationRoot>WavixIV>neural501>template_performance.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boiler_process.m

(back to table of contents)
  PROCESS FUNCTION BOILERPLATE CODE

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:14

Size:

4711 bytes

Calls functions:

ModelitUtilRoot>c.m
ModelitUtilRoot>name.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>fixunknowns.m
ApplicationRoot>WavixIV>neural501>mapminmax.m
ApplicationRoot>WavixIV>neural501>mapstd.m
ApplicationRoot>WavixIV>neural501>processpca.m
ApplicationRoot>WavixIV>neural501>removeconstantrows.m
ApplicationRoot>WavixIV>neural501>removerows.m
ApplicationRoot>WavixIV>neural501>template_process.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

(back to table of contents)
  TRANSFER_BOILER Boilerplate code for transfer functions.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:16

Size:

2763 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nnt_fpc2s.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ModelitUtilRoot>name.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>compet.m
ApplicationRoot>WavixIV>neural501>hardlim.m
ApplicationRoot>WavixIV>neural501>hardlims.m
ApplicationRoot>WavixIV>neural501>logsig.m
ApplicationRoot>WavixIV>neural501>netinv.m
ApplicationRoot>WavixIV>neural501>poslin.m
ApplicationRoot>WavixIV>neural501>purelin.m
ApplicationRoot>WavixIV>neural501>radbas.m
ApplicationRoot>WavixIV>neural501>satlin.m
ApplicationRoot>WavixIV>neural501>satlins.m
ApplicationRoot>WavixIV>neural501>softmax.m
ApplicationRoot>WavixIV>neural501>tansig.m
ApplicationRoot>WavixIV>neural501>template_transfer.m
ApplicationRoot>WavixIV>neural501>tribas.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boiler_weight.m

(back to table of contents)
 BOILER_WEIGHT   Boilerplate script for weight functions.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:16

Size:

1399 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m
ModelitUtilRoot>c.m
ModelitUtilRoot>name.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>convwf.m
ApplicationRoot>WavixIV>neural501>dist.m
ApplicationRoot>WavixIV>neural501>dotprod.m
ApplicationRoot>WavixIV>neural501>mandist.m
ApplicationRoot>WavixIV>neural501>negdist.m
ApplicationRoot>WavixIV>neural501>normprod.m
ApplicationRoot>WavixIV>neural501>scalprod.m
ApplicationRoot>WavixIV>neural501>template_weight.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>boxdist.m

(back to table of contents)
 BOXDIST Box distance function.
 
   Syntax
 
     d = boxdist(pos);
 
   Description
 
     BOXDIST is a layer distance function used to find
     the distances between the layer's neurons given their
     positions.
 
     BOXDIST(pos) takes one argument,
       POS - NxS matrix of neuron positions.
      and returns the SxS matrix of distances.
 
     BOXDIST is most commonly used in conjunction with layers
     whose topology function is GRIDTOP.
 
   Examples
 
     Here we define a random matrix of positions for 10 neurons
     arranged in three dimensional space and find their distances.
 
       pos = rand(3,10);
       d = boxdist(pos)
 
   Network Use
 
     You can create a standard network that uses BOXDIST
     as a distance function by calling NEWSOM.
 
     To change a network so a layer's topology uses BOXDIST set
     NET.layers{i}.distanceFcn to 'boxdist'.
 
     In either case, call SIM to simulate the network with BOXDIST.
     See NEWSOM for training and adaption examples.
 
   Algorithm
 
     The box distance D between two position vectors Pi and Pj
     from a set of S vectors is:
   
       Dij = max(abs(Pi-Pj))
 
   See also SIM, DIST, MANDIST, LINKDIST.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:10

Size:

1503 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calca.m

(back to table of contents)
 CALCA Calculate network outputs and other signals.
 
 	Syntax
 
 	  [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,Q,TS)
 
 	Description
 
 	  This function calculates the outputs of each layer in
 	  response to a networks delayed inputs and initial layer
 	  delay conditions.
 
 	  [Ac,N,LWZ,IWZ,BZ] = CALCA(NET,Pd,Ai,Q,TS) takes,
 	    NET - Neural network.
 	    Pd  - Delayed inputs.
 	    Ai  - Initial layer delay conditions.
 	    Q   - Concurrent size.
 	    TS  - Time steps.
 	  and returns,
 	    Ac  - Combined layer outputs = [Ai, calculated layer outputs].
 	    N   - Net inputs.
 	    LWZ - Weighted layer outputs.
 	    IWZ - Weighted inputs.
 	    BZ  - Concurrent biases.
 
 	Examples
 
 	  Here we create a linear network with a single input element
 	  ranging from 0 to 1, three neurons, and a tap delay on the
 	  input with taps at 0, 2, and 4 timesteps.  The network is
 	  also given a recurrent connection from layer 1 to itself with
 	  tap delays of [1 2].
 
 	    net = newlin([0 1],3,[0 2 4]);
 	    net.layerConnect(1,1) = 1;
 	    net.layerWeights{1,1}.delays = [1 2];
 
 	  Here is a single (Q = 1) input sequence P with 8 timesteps (TS = 8),
 	  and the 4 initial input delay conditions Pi, combined inputs Pc,
 	  and delayed inputs Pd.
 
 	    P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
 	    Pi = {0.2 0.3 0.4 0.1};
 	    Pc = [Pi P];
 	    Pd = calcpd(net,8,1,Pc)
 
 	  Here the two initial layer delay conditions for each of the
 	  three neurons are defined:
 
 	    Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};
 
 	  Here we calculate the network's combined outputs Ac, and other
 	  signals described above..
 
 	    [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,8)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:18

Size:

4019 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>@network>sim.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calca1.m

(back to table of contents)
 CALCA1 Calculate network signals for one time step.
 
   Syntax
 
     [A,N,LWZ,IWZ,BZ] = CALCA1(NET,PD,Ai,Q)
 
   Description
 
     This function calculates the outputs of each layer in
     response to a networks delayed inputs and initial layer
     delay conditions, for a single time step.
 
     Calculating outputs for a single time step is useful for
     sequential iterative algorithms such as TRAINS which
     which need to calculate the network response for each
     time step individually.
 
     [Ac,N,LWZ,IWZ,BZ] = CALCA1(NET,Pd,Ai,Q) takes,
       NET - Neural network.
       Pd  - Delayed inputs for a single timestep.
       Ai  - Initial layer delay conditions for a single timestep.
       Q   - Concurrent size.
     and returns,
       A   - Layer outputs for the timestep.
       N   - Net inputs for the timestep.
       LWZ - Weighted layer outputs for the timestep.
       IWZ - Weighted inputs for the timestep.
       BZ  - Concurrent biases for the timestep.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, three neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],3,[0 2 4]);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 8 timesteps (TS = 8),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,8,1,Pc)
 
     Here the two initial layer delay conditions for each of the
     three neurons are defined:
 
       Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};
 
     Here we calculate the network's combined outputs Ac, and other
     signals described above, for timestep 1.
 
       [A,N,LWZ,IWZ,BZ] = calca1(net,Pd(:,:,1),Ai,1)
 
     We can calculate the new layer delay states from Ai and A,
     then calculate the signals for timestep 2.
 
       Ai2 = [Ai(:,2:end) A];
       [A2,N,LWZ,IWZ,BZ] = calca1(net,Pd(:,:,2),Ai2,1)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:18

Size:

3660 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>trains.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calce.m

(back to table of contents)
 CALCE Calculate layer errors.
 
   Synopsis
 
     El = calce(net,Ac,Tl,TS)
 
   Description
 
     This function calculates the errors of each layer in
     response to layer outputs and targets.
 
     El = CALCE(NET,Ac,Tl,TS) takes,
       NET - Neural network.
       Ac  - Combined layer outputs.
       Tl  - Layer targets.
       Q   - Concurrent size.
     and returns,
       El  - Layer errors.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, two neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],2);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,5,1,Pc);
 
     Here the two initial layer delay conditions for each of the
     two neurons are defined, and the networks combined outputs Ac
     and other signals are calculated.
 
       Ai = {[0.5; 0.1] [0.6; 0.5]};
       [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);
 
     Here we define the layer targets for the two neurons for
     each of the five time steps, and calculate the layer errors.
     
       Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
       El = calce(net,Ac,Tl,5)
 
     Here we view the network's error for layer 1 at timestep 2.
 
       El{1,2}

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:28

Size:

2089 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>@network>sim.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calce1.m

(back to table of contents)
 CALCE1 Calculate layer errors for one time step.
 
   Synopsis
 
     El = calce1(net,A,Tl)
 
   Description
 
     This function calculates the errors of each layer in
     response to layer outputs and targets, for a single time step.
 
     Calculating errors for a single time step is useful for
     sequential iterative algorithms such as TRAINS which
     need to calculate the network response for each
     time step individually.
 
     El = CALCE1(NET,A,Tl) takes,
       NET - Neural network.
       A   - Layer outputs, for a single time step.
       Tl  - Layer targets, for a single time step.
     and returns,
       El  - Layer errors, for a single time step.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, two neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],2);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,5,1,Pc);
 
     Here the two initial layer delay conditions for each of the
     two neurons are defined, and the networks combined outputs Ac
     and other signals are calculated.
 
       Ai = {[0.5; 0.1] [0.6; 0.5]};
       [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);
 
     Here we define the layer targets for the two neurons for
     each of the five time steps, and calculate the layer errors
     using the first time step layer output Ac(:,5) (The five
     is found by adding the number of layer delays, 2, to the
     time step 1.), and the first time step targets Tl(:,1).
     
       Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
       El = calce1(net,Ac(:,3),Tl(:,1))
 
     Here we view the network's error for layer 1.
 
       El{1}

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:30

Size:

2469 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>trains.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcerr.m

(back to table of contents)
 CALCERR Calculates matrix or cell array errors.
 
   E = CALCERR(T,A)
     T - MxN matrix.
     A - MxN matrix.
   Returns
     D - MxN matrix A-B.
 
   E = CALCERR(A,B)
     T - MxN cell array of matrices A{i,j}.
     A - MxN cell array of matrices B{i,j}.
   Returns
     D - MxN cell array of matrices A{i,j}-B{i,j}.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:34

Size:

767 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcfdot.m

(back to table of contents)
 CALCFDOT Calculate derivatives of transfer functions for use in dynamic gradient functions.
 
 	Synopsis
 
 	  [S] = calcfdot(i,TF,transferParam,TS,Q,Ae,numLayerDelays,N,extrazeros,layerSize)
 
 	Warning!!
 
 	  This function may be altered or removed in future
 	  releases of the Neural Network Toolbox. We recommend
 	  you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:20

Size:

1245 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>calcgbtt.m
ApplicationRoot>WavixIV>neural501>calcgfp.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcgbtt.m

(back to table of contents)
 CALCGBTT Calculate bias and weight performance gradients using the backpropagation through time algorithm.
          
 
 	Synopsis
 
 	  [gB,gIW,gLW,gA] = calcgbtt(net,Q,PD,BZ,IWZ,LWZ,N,Ac,gE,TS)
 
 	Warning!!
 
 	  This function may be altered or removed in future
 	  releases of the Neural Network Toolbox. We recommend
 	  you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:02

Size:

18515 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcfdot.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcjxbt.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcgfp.m

(back to table of contents)
 CALCGFP Calculate bias and weight performance gradients.
 
 	Synopsis
 
 	  [gB,gIW,gLW] = calcgfp(net,Q,PD,BZ,IWZ,LWZ,N,Ac,gE,TS,time_base)
 
 	Warning!!
 
 	  This function may be altered or removed in future
 	  releases of the Neural Network Toolbox. We recommend
 	  you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:22

Size:

22684 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcfdot.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>calcjxfp.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcgrad.m

(back to table of contents)
 CALCGRAD Calculate bias and weight performance gradients.
 
 	Synopsis
 
 	  [gB,gIW,gIW] = calcgrad(net,Q,PD,BZ,IWZ,LWZ,N,Ac,gE,TS)
 
 	Warning!!
 
 	  This function may be altered or removed in future
 	  releases of the Neural Network Toolbox. We recommend
 	  you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:22

Size:

6466 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trains.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcgx.m

(back to table of contents)
 CALCGX Calculate weight and bias performance gradient as a single vector.
 
   Syntax
 
     [gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS);
 
   Description
 
     This function calculates the gradient of a network's performance
     with respect to its vector of weight and bias values X.
 
     If the network has no layer delays with taps greater than 0
     the result is the true gradient.
 
     If the network as layer delays greater than 0, the result is
     the Elman gradient, an approximation of the true gradient.
 
     [gX,normgX] = CALCGX(NET,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS) takes,
       NET    - Neural network.
       X      - Vector of weight and bias values.
       Pd     - Delayed inputs.
       BZ     - Concurrent biases.
       IWZ    - Weighted inputs.
       LWZ    - Weighted layer outputs.
       N      - Net inputs.
       Ac     - Combined layer outputs.
       El     - Layer errors.
       perf   - Network performance.
       Q      - Concurrent size.
       TS     - Time steps.
     and returns,
       gX     - Gradient dPerf/dX.
       normgX - Norm of gradient.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, two neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],2);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,5,1,Pc);
 
     Here the two initial layer delay conditions for each of the
     two neurons, and the layer targets for the two neurons over
     five timesteps are defined.
 
       Ai = {[0.5; 0.1] [0.6; 0.5]};
       Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
     Here the network's weight and bias values are extracted, and
     the network's performance and other signals are calculated.
 
       X = getx(net);
       [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
 
     Finally we can use CALCGX to calculate the gradient of performance
     with respect to the weight and bias values X.
 
       [gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,1,5);
 
   See also CALCJX, CALCJEJJ.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:24

Size:

3686 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgbtt.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>formgx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>srchbac.m
ApplicationRoot>WavixIV>neural501>srchbre.m
ApplicationRoot>WavixIV>neural501>srchcha.m
ApplicationRoot>WavixIV>neural501>srchgol.m
ApplicationRoot>WavixIV>neural501>srchhyb.m
ApplicationRoot>WavixIV>neural501>template_search.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcjejj.m

(back to table of contents)
 CALCJEJJ Calculate Jacobian performance vector.
 
   Syntax
 
     [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR)
 
   Description
 
     This function calculates two values (related to the Jacobian
     of a network) required to calculate the network's Hessian,
     in a memory efficient way.
 
     Two values needed to calculate the Hessian of a network are
     J*E (Jacobian times errors) and J'J (Jacobian squared).
     However the Jacobian J can take up a lot of memory.
 
     This function calculates J*E and J'J by dividing up training
     vectors into groups, calculating partial Jacobians Ji and
     its associated values Ji*Ei and Ji'Ji, then summing the
     partial values into the full J*E and J'J values.
 
     This allows the J*E and J'J values to be calculated with a
     series of smaller Ji matrices, instead of a larger J matrix.
 
     [je,jj,normgX] = CALCJEJJ(NET,PD,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR) takes,
       NET    - Neural network.
       PD     - Delayed inputs.
       BZ     - Concurrent biases.
       IWZ    - Weighted inputs.
       LWZ    - Weighted layer outputs.
       N      - Net inputs.
       Ac     - Combined layer outputs.
       El     - Layer errors.
       Q      - Concurrent size.
       TS     - Time steps.
       MR     - Memory reduction factor.
     and returns,
       je     - Jacobian times errors.
       jj     - Jacobian transposed time the Jacobian.
      normgx - Magnitute of the gradient.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, two neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],2);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,5,1,Pc);
 
     Here the two initial layer delay conditions for each of the
     two neurons, and the layer targets for the two neurons over
     five timesteps are defined.
 
       Ai = {[0.5; 0.1] [0.6; 0.5]};
       Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
     Here the network's weight and bias values are extracted, and
     the network's performance and other signals are calculated.
 
       [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
 
     Finally we can use CALCGX to calculate the Jacobian times error,
     Jacobian squared, and the norm of the Jocobian times error using
     a memory reduction of 2.
 
       [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,2);
 
     The results should be the same whatever the memory reduction
     used.  Here a memory reduction of 3 is used.
 
       [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,3);
 
   See also CALCJX, CALCJEJJ.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:24

Size:

6162 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainlm.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcjx.m

(back to table of contents)
 CALCJX Calculate weight and bias performance Jacobian as a single matrix.
 
   Syntax
 
     jx = calcjx(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS)
 
   Description
 
     This function calculates the Jacobian of a network's errors
     with respect to its vector of weight and bias values X.
 
     jX = CALCJX(NET,PD,BZ,IWZ,LWZ,N,Ac,Q,TS) takes,
       NET    - Neural network.
       PD     - Delayed inputs.
       BZ     - Concurrent biases.
       IWZ    - Weighted inputs.
       LWZ    - Weighted layer outputs.
       N      - Net inputs.
       Ac     - Combined layer outputs.
       Q      - Concurrent size.
       TS     - Time steps.
     and returns,
       jX     - Jacobian of network errors with respect to X.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, two neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.  The network is
     also given a recurrent connection from layer 1 to itself with
     tap delays of [1 2].
 
       net = newlin([0 1],2);
       net.layerConnect(1,1) = 1;
       net.layerWeights{1,1}.delays = [1 2];
 
     Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
     and the 4 initial input delay conditions Pi, combined inputs Pc,
     and delayed inputs Pd.
 
       P = {0 0.1 0.3 0.6 0.4};
       Pi = {0.2 0.3 0.4 0.1};
       Pc = [Pi P];
       Pd = calcpd(net,5,1,Pc);
 
     Here the two initial layer delay conditions for each of the
     two neurons, and the layer targets for the two neurons over
     five timesteps are defined.
 
       Ai = {[0.5; 0.1] [0.6; 0.5]};
       Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
     Here the network's weight and bias values are extracted, and
     the network's performance and other signals are calculated.
 
       [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
 
     Finally we can use CALCJX to calculate the Jacobian.
 
       jX = calcjx(net,Pd,BZ,IWZ,LWZ,N,Ac,1,5);
 
   See also CALCGX, CALCJEJJ.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:26

Size:

9776 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcjxbt.m

(back to table of contents)
 CALCJXBT Calculate weight and bias performance Jacobian as a single matrix.
 
 	Syntax
 
 	  jx = calcjxbt(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS)
 
 	Description
 
 	  This function calculates the Jacobian of a network's errors
 	  with respect to its vector of weight and bias values X.
 
 	  jX = CALCJXBT(NET,PD,BZ,IWZ,LWZ,N,Ac,Q,TS) takes,
 	    NET    - Neural network.
 	    PD     - Delayed inputs.
 	    BZ     - Concurrent biases.
 	    IWZ    - Weighted inputs.
 	    LWZ    - Weighted layer outputs.
 	    N      - Net inputs.
 	    Ac     - Combined layer outputs.
 	    Q      - Concurrent size.
 	    TS     - Time steps.
 	  and returns,
 	    jX     - Jacobian of network errors with respect to X.
 
 	Examples
 
 	  Here we create a linear network with a single input element
 	  ranging from 0 to 1, two neurons, and a tap delay on the
 	  input with taps at 0, 2, and 4 timesteps.  The network is
 	  also given a recurrent connection from layer 1 to itself with
 	  tap delays of [1 2].
 
 	    net = newlin([0 1],2);
 	    net.layerConnect(1,1) = 1;
 	    net.layerWeights{1,1}.delays = [1 2];
 
     We initialize the weights to specific values:
 
       net.IW{1}=[0.1;0.2];
       net.LW{1}=[0.01 0.02 0.03 0.04; 0.05 0.06 0.07 0.07];
       net.b{1}=[0.3; 0.4];
 
 	  Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
 	  and the 4 initial input delay conditions Pi, combined inputs Pc,
 	  and delayed inputs Pd.
 
 	    P = {0 0.1 0.3 0.6 0.4};
 	    Pi = {0.2 0.3 0.4 0.1};
 	    Pc = [Pi P];
 	    Pd = calcpd(net,5,1,Pc);
 
 	  Here the two initial layer delay conditions for each of the
 	  two neurons, and the layer targets for the two neurons over
 	  five timesteps are defined.
 
 	    Ai = {[0.5; 0.1] [0.6; 0.5]};
 	    Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
 	  Here the network's weight and bias values are extracted, and
 	  the network's performance and other signals are calculated.
 
 	    [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
 
 	  Finally we can use CALCJXBT to calculate the Jacobian.
 
 	    jX = calcjxbt(net,Pd,BZ,IWZ,LWZ,N,Ac,1,5);
 
     IMPORTANT: If you use the regular CALCJX the gradient values will
                differ because the dynamics are not being considered.
 
 	See also CALCGX, CALCJXFP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:20:42

Size:

4173 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgbtt.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcjxfp.m

(back to table of contents)
 CALCJXFP Calculate weight and bias performance Jacobian as a single matrix.
 
 	Syntax
 
 	  jx = calcjxfp(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS)
 
 	Description
 
 	  This function calculates the Jacobian of a network's errors
 	  with respect to its vector of weight and bias values X.
 
 	  jX = CALCJXFP(NET,PD,BZ,IWZ,LWZ,N,Ac,Q,TS) takes,
 	    NET    - Neural network.
 	    PD     - Delayed inputs.
 	    BZ     - Concurrent biases.
 	    IWZ    - Weighted inputs.
 	    LWZ    - Weighted layer outputs.
 	    N      - Net inputs.
 	    Ac     - Combined layer outputs.
 	    Q      - Concurrent size.
 	    TS     - Time steps.
 	  and returns,
 	    jX     - Jacobian of network errors with respect to X.
 
 	Examples
 
 	  Here we create a linear network with a single input element
 	  ranging from 0 to 1, two neurons, and a tap delay on the
 	  input with taps at 0, 2, and 4 timesteps.  The network is
 	  also given a recurrent connection from layer 1 to itself with
 	  tap delays of [1 2].
 
 	    net = newlin([0 1],2);
 	    net.layerConnect(1,1) = 1;
 	    net.layerWeights{1,1}.delays = [1 2];
 
     We initialize the weights to specific values:
 
       net.IW{1}=[0.1;0.2];
       net.LW{1}=[0.01 0.02 0.03 0.04; 0.05 0.06 0.07 0.07];
       net.b{1}=[0.3; 0.4];
 
 	  Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
 	  and the 4 initial input delay conditions Pi, combined inputs Pc,
 	  and delayed inputs Pd.
 
 	    P = {0 0.1 0.3 0.6 0.4};
 	    Pi = {0.2 0.3 0.4 0.1};
 	    Pc = [Pi P];
 	    Pd = calcpd(net,5,1,Pc);
 
 	  Here the two initial layer delay conditions for each of the
 	  two neurons, and the layer targets for the two neurons over
 	  five timesteps are defined.
 
 	    Ai = {[0.5; 0.1] [0.6; 0.5]};
 	    Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
 	  Here the network's weight and bias values are extracted, and
 	  the network's performance and other signals are calculated.
 
 	    [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);
 
 	  Finally we can use CALCJXFP to calculate the Jacobian.
 
 	    jX = calcjxfp(net,Pd,BZ,IWZ,LWZ,N,Ac,1,5);
 
     IMPORTANT: If you use the regular CALCJX the gradient values will
                differ because the dynamics is not being considered.
 
 	See also CALCGX, CALCJXBT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:20:44

Size:

4147 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgfp.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcpd.m

(back to table of contents)
 CALCPD Calculate delayed network inputs.
 
   Syntax
 
     Pd = calcpd(net,TS,Q,Pc)
 
   Description
 
     This function calculates the results of passing the network
     inputs through each input weights tap delay line.
 
     Pd = CALCPD(NET,TS,Q,Pc) takes,
       NET - Neural network.
       TS  - Time steps.
       Q   - Concurrent size.
       Pc  - Combined inputs = [initial delay conditions, network inputs].
     and returns,
       Pd  - Delayed inputs.
 
   Examples
 
     Here we create a linear network with a single input element
     ranging from 0 to 1, three neurons, and a tap delay on the
     input with taps at 0, 2, and 4 timesteps.
 
       net = newlin([0 1],3,[0 2 4]);
 
     Here is a single (Q = 1) input sequence P with 8 timesteps (TS = 8).
 
       P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
 
     Here we define the 4 initial input delay conditions Pi.
 
       Pi = {0.2 0.3 0.4 0.1};
 
     The delayed inputs (the inputs after passing through the tap
     delays) can be calculated with CALCPD.
 
       Pc = [Pi P];
       Pd = calcpd(net,8,1,Pc)
 
     Here we view the delayed inputs for input weight going to layer 1,
     from input 1 at timesteps 1 and 2.
 
       Pd{1,1,1}
       Pd{1,1,2}

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:46

Size:

2036 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>calcperf.m

(back to table of contents)
 CALCPERF Calculate network outputs, signals, and performance.
 
 	Synopsis
 
 	  [perf,El,Ac,N,BZ,IWZ,LWZ]=calcperf(net,X,Pd,Tl,Ai,Q,TS)
 
 	Description
 
 	  This function calculates the outputs of each layer in
 	  response to a networks delayed inputs and initial layer
 	  delay conditions.
 
 	  [perf,El,Ac,N,LWZ,IWZ,BZ] = CALCPERF(NET,X,Pd,Tl,Ai,Q,TS) takes,
 	    NET - Neural network.
 	    X   - Network weight and bias values in a single vector.
 	    Pd  - Delayed inputs.
 	    Tl  - Layer targets.
 	    Ai  - Initial layer delay conditions.
 	    Q   - Concurrent size.
 	    TS  - Time steps.
 	  and returns,
 	    perf - Network performance.
 	    El   - Layer errors.
 	    Ac   - Combined layer outputs = [Ai, calculated layer outputs].
 	    N    - Net inputs.
 	    LWZ  - Weighted layer outputs.
 	    IWZ  - Weighted inputs.
 	    BZ   - Concurrent biases.
 
 	Examples
 
 	  Here we create a linear network with a single input element
 	  ranging from 0 to 1, two neurons, and a tap delay on the
 	  input with taps at 0, 2, and 4 timesteps.  The network is
 	  also given a recurrent connection from layer 1 to itself with
 	  tap delays of [1 2].
 
 	    net = newlin([0 1],2);
 	    net.layerConnect(1,1) = 1;
 	    net.layerWeights{1,1}.delays = [1 2];
 
 	  Here is a single (Q = 1) input sequence P with 5 timesteps (TS = 5),
 	  and the 4 initial input delay conditions Pi, combined inputs Pc,
 	  and delayed inputs Pd.
 
 	    P = {0 0.1 0.3 0.6 0.4};
 	    Pi = {0.2 0.3 0.4 0.1};
 	    Pc = [Pi P];
 	    Pd = calcpd(net,5,1,Pc);
 
 	  Here the two initial layer delay conditions for each of the
 	  two neurons are defined.
 
 	    Ai = {[0.5; 0.1] [0.6; 0.5]};
 
 	  Here we define the layer targets for the two neurons for
 	  each of the five time steps.
 	  
 	    Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
 
 	  Here the network's weight and bias values are extracted.
 
 	    X = getx(net);
 
 	  Here we calculate the network's combined outputs Ac, and other
 	  signals described above..
 
 	    [perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:26

Size:

6299 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>srchbac.m
ApplicationRoot>WavixIV>neural501>srchbre.m
ApplicationRoot>WavixIV>neural501>srchcha.m
ApplicationRoot>WavixIV>neural501>srchgol.m
ApplicationRoot>WavixIV>neural501>srchhyb.m
ApplicationRoot>WavixIV>neural501>template_search.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>cliptr.m

(back to table of contents)
 CLIPTR Clip training record to the final number of epochs.
 
   Syntax
 
     tr = cliptr(tr,epochs)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:54

Size:

569 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>combvec.m

(back to table of contents)
 COMBVEC Create all combinations of vectors.
 
   Syntax
 
     combvec(a1,a2,...)
 
   Description
 
     COMBVEC(A1,A2,...) takes any number of inputs,
       A1 - Matrix of N1 (column) vectors.
       A2 - Matrix of N2 (column) vectors.
     and returns a matrix of (N1*N2*...) column vectors, where the columns
     consist of all possibilities of A2 vectors, appended to
     A1 vectors, etc.
 
   Example
   
     a1 = [1 2 3; 4 5 6];
     a2 = [7 8; 9 10];
     a3 = combvec(a1,a2)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:12

Size:

1275 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>compet.m

(back to table of contents)
 COMPET Competitive transfer function.
 	
 	Syntax
 
 	  A = compet(N,FP)
    dA_dN = compet('dn',N,A,FP)
 	  INFO = compet(CODE)
 
 	Description
 	
 	  COMPET is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  COMPET(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns SxQ matrix A with a 1 in each column where
 	  the same column of N has its maximum value, and 0 elsewhere.
 	
    COMPET('dn',N,A,FP) returns derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    COMPET('name') returns the name of this function.
    COMPET('output',FP) returns the [min max] output range.
    COMPET('active',FP) returns the [min max] active input range.
    COMPET('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    COMPET('fpnames') returns the names of the function parameters.
    COMPET('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here we define a net input vector N, calculate the output,
 	  and plot both with bar graphs.
 
 	    n = [0; 1; -0.5; 0.5];
 	    a = compet(n);
 	    subplot(2,1,1), bar(n), ylabel('n')
 	    subplot(2,1,2), bar(a), ylabel('a')
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'compet';
 
 	See also SIM, SOFTMAX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:06

Size:

2747 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>competsl.m

(back to table of contents)
 COMPETSL Competitive transfer function used by SIMULINK.
 
   Syntax
 
     a = competsl(n)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:48

Size:

468 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>con2seq.m

(back to table of contents)
 CON2SEQ Convert concurrent vectors to sequential vectors.
 
   Syntax
   
     s = con2seq(b)
 
   Description
 
     The neural network toolbox arranges concurrent vectors
     with a matrix, and sequential vectors with a cell array
     (where the second index is the time step).
 
     CON2SEQ and SEQ2CON allow concurrent vectors to be converted
     to sequential vectors, and back again.
 
     CON2SEQ(B) takes one input,
       B - RxTS matrix.
     and returns one output,
       S - 1xTS cell array of Rx1 vectors.
 
     CON2SEQ(B,TS) can also convert multiple batches,
       B  - Nx1 cell array of matrices with M*TS columns.
       TS - Time steps.
     and will return,
       S - NxTS cell array of matrices with M columns.
 
   Example
 
     Here a batch of three values is converted to a
     sequence.
 
       p1 = [1 4 2]
       p2 = con2seq(p1)
 
     Here two batches of vectors are converted to a
     two sequences with two time steps.
 
       p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
       p2 = con2seq(p1,2)
 
   See also SEQ2CON, CONCUR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:14

Size:

1740 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>concur.m

(back to table of contents)
 CONCUR Create concurrent bias vectors.
 
   Syntax
 
     concur(b,q)
 
   Description
 
     CONCUR(B,Q)
       B - Nlx1 cell array of bias vectors.
       Q - Concurrent size.
     Returns an SxB matrix of copies of B (or Nlx1 cell array of matrices).
 
   Examples
   
     Here CONCUR creates three copies of a bias vector.
 
       b = [1; 3; 2; -1];
       concur(b,3)
 
   Network Use
 
     To calculate a layer's net input, the layer's weighted
     inputs must be combined with its biases.  The following
     expression calculates the net input for a layer with
     the NETSUM net input function, two input weights, and
     a bias:
 
       n = netsum(z1,z2,b)
 
     The above expression works if Z1, Z2, and B are all Sx1
     vectors.  However, if the network is being simulated by SIM
     (or ADAPT or TRAIN) in response to Q concurrent vectors,
     then Z1 and Z2 will be SxQ matrices.  Before B can be
     combined with Z1 and Z2 we must make Q copies of it.
 
       n = netsum(z1,z2,concur(b,q))
     
   See also NETSUM, NETPROD, SIM, SEQ2CON, CON2SEQ.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:14

Size:

1493 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>convwf.m

(back to table of contents)
 CONVWF Convolution weight function.
 
 	Syntax
 
 	  Z = convwf(W,P)
    dim = convwf('size',S,R,FP)
    dp = convwf('dp',W,P,Z,FP)
    dw = convwf('dw',W,P,Z,FP)
 	  info = convwf(code)
 
 	Description
 
 	  CONVWF is the convolution weight function.  Weight functions
 	  apply weights to an input to get weighted inputs.
 
 	  CONVWF(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
 	    'fullderiv'  - Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'pfullderiv' - Input: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'wfullderiv' - Weight: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 
      CONVWF('size',S,R,FP) takes the layer dimension S, input dimention R,
      and function parameters, and returns the weight size.
 
      CONVWF('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
      CONVWF('dw',W,P,Z,FP) returns the derivative of Z with respect to W.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,1);
 	    P = rand(8,1);
 	    Z = convwf(W,P)
 
 	Network Use
 
 	  To change a network so an input weight uses CONVWF set
 	  NET.inputWeight{i,j}.weightFcn to 'convwf'.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'convwf'.
 
 	  In either case, call SIM to simulate the network with CONVWF.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:20

Size:

3269 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dist.m

(back to table of contents)
 DIST Euclidean distance weight function.
 
 	Syntax
 
 	  Z = dist(W,P,FP)
 	  info = dist(code)
    dim = dist('size',S,R,FP)
    dp = dist('dp',W,P,Z,FP)
    dw = dist('dw',W,P,Z,FP)
 	  D = dist(pos)
 
 	Description
 
 	  DIST is the Euclidean distance weight function. Weight
 	  functions apply weights to an input to get weighted inputs.
 
 	  DIST(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ matrix of vector distances.
 
 	  DIST(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
      'fullderiv'  - Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
    DIST('size',S,R,FP) takes the layer dimension S, input dimention R,
    and function parameters, and returns the weight size [SxR].
 
    DIST('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
    DIST('dw',W,P,Z,FP) returns the derivative of Z with respect to W.
 
 	  DIST is also a layer distance function which can be used
 	  to find the distances between neurons in a layer.
 
 	  DIST(POS) takes one argument,
 	    POS - NxS matrix of neuron positions.
      and returns the SxS matrix of distances.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,3);
 	    P = rand(3,1);
 	    Z = dist(W,P)
 
 	  Here we define a random matrix of positions for 10 neurons
 	  arranged in three dimensional space and find their distances.
 
 	    pos = rand(3,10);
 	    D = dist(pos)
 
 	Network Use
 
 	  You can create a standard network that uses DIST
 	  by calling NEWPNN or NEWGRNN.
 
 	  To change a network so an input weight uses DIST set
 	  NET.inputWeight{i,j}.weightFcn to 'dist.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'dist'.
 
 	  To change a network so that a layer's topology uses DIST set
 	  NET.layers{i}.distanceFcn to 'dist'.
 
 	  In either case, call SIM to simulate the network with DIST.
 	  See NEWPNN or NEWGRNN for simulation examples.
 
 	Algorithm
 
 	  The Euclidean distance D between two vectors X and Y is:
 	
 	    D = sum((x-y).^2).^0.5
 
 	See also SIM, DOTPROD, NEGDIST, NORMPROD, MANDIST, LINKDIST.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:20

Size:

4796 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>linkdist.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m
ApplicationRoot>WavixIV>neural501>plotsom.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dividevec.m

(back to table of contents)
 DIVIDEVEC Divide problem vectors into training, validation and test vectors.
 
  Syntax
 
    [trainV,valV,testV] = dividevec(p,t,valPercent,testPercent)
 
  Description
 
    DIVIDEVEC is used to seperate a set of input and target data into
    groups of vectors for training, validating network performance during
    training so that training stops early if it attempts to overfit the training
    data, and test data used for an independent measure of how the network
    might be expected to perform on data it was not trained on.
  
    DIVIDEVEC(P,T,valPercent,testPercent) takes the following inputs,
      P - RxQ matrix of inputs, or cell array of input matices.
      T - SxQ matrix of targets, or cell array of target matrices.
      valPercent - Fraction of column vectors to use for validation.
      testPercent - Fraction of column vectors to use for test.
    and returns:
      trainV.P, .T, .indices - Training vectors and their original indices
      valV.P, .T, .indices - Validation vectors and their original indices
      testV.P, .T, .indices - Test vectors and their original indices
 
  Examples
 
    Here 1000 3-element input and 2-element target vectors are  created:
    
      p = rands(3,1000);
      t = [p(1,:).*p(2,:); p(2,:).*p(3,:)];
 
   Here they are divided up into training, validation and test sets.
   Validation and test sets contain 20% of the vectors each, leaving
   60% of the vectors for training.
 
      [trainV,valV,testV] = dividevec(p,t,0.20,0.20);
 
   Now a network is created and trained with the data.
 
      net = newff(minmax(p),[10 size(t,1)]);
      net = train(net,trainV.P,trainV.T,[],[],valV,testV);
 
  See also con2seq, seq2con.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

25-Jan-2006 19:49:20

Size:

3151 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nncheckpt.m
ApplicationRoot>WavixIV>neural501>nnpackdata.m
ApplicationRoot>WavixIV>neural501>nnunpackdata.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dnullpf.m

(back to table of contents)
 DNULLPF Derivative of null performance function.
 
   DNULLPF('E',E,X,PERF)
     E    - Layer errors.
     X    - Vector of weight and bias values.
    Returns zeros.
 
   DNULLPF('X',E,X,PERF)
    Returns zeros.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:06

Size:

624 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dnulltf.m

(back to table of contents)
 DNULLTF Null transfer derivative function.
 
   Syntax
 
     dA_dN = dnulltf(N,A)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:12

Size:

416 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dnullwf.m

(back to table of contents)
 DNULLWF Null weight derivative function.
 
   Syntax
   
     dZ_dP = dnullwf('p',W,P,Z)
     dZ_dW = dnullwf('w',W,P,Z)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:22

Size:

569 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>dotprod.m

(back to table of contents)
 DOTPROD Dot product weight function.
 
 	Syntax
 
 	  Z = dotprod(W,P,FP)
 	  info = dotprod(code)
      dim = dotprod('size',S,R,FP)
      dp = dotprod('dp',W,P,Z,FP)
      dw = dotprod('dw',W,P,Z,FP)
 
 	Description
 
 	  DOTPROD is the dot product weight function.  Weight functions
 	  apply weights to an input to get weighted inputs.
 
 	  DOTPROD(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ dot product of W and P.
 
 	  DOTPROD(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function (for ver. 4).
 	    'pfullderiv' - Input: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
        'wfullderiv' - Weight: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
    DOTPROD('size',S,R,FP) takes the layer dimension S, input dimention R,
    and function parameters, and returns the weight size [SxR].
 
    DOTPROD('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
    DOTPROD('dw',W,P,Z,FP) returns the derivative of Z with respect to W.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,3);
 	    P = rand(3,1);
 	    Z = dotprod(W,P)
 
 	Network Use
 
 	  You can create a standard network that uses DOTPROD
 	  by calling NEWP or NEWLIN.
 
 	  To change a network so an input weight uses DOTPROD set
 	  NET.inputWeight{i,j}.weightFcn to 'dotprod.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'dotprod.
 
 	  In either case, call SIM to simulate the network with DOTPROD.
 	  See NEWP and NEWLIN for simulation examples.
 
 	See also SIM, DDOTPROD, DIST, NEGDIST, NORMPROD.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:22

Size:

3422 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>errsurf.m

(back to table of contents)
 ERRSURF Error surface of single input neuron.
 
   Syntax
 
     E = errsurf(P,T,WV,BV,F)
 
   Description
   
     ERRSURF(P,T,WV,BV,F) takes these arguments,
       P  - 1xQ matrix of input vectors.
       T  - 1xQ matrix of target vectors.
       WV - Row vector of values of W.
       BV - Row vector of values of B.
       F  - Transfer function (string).
     and returns a matrix of error values over WV and BV.
          
   Examples
 
     p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
     t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
     wv = -1:.1:1; bv = -2.5:.25:2.5;
     es = errsurf(p,t,wv,bv,'logsig');
     plotes(wv,bv,es,[60 30])
 
   See also PLOTES.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:18:54

Size:

1074 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>fixunknowns.m

(back to table of contents)
 FIXUNKNOWNS Processes matrix rows with unknown values.
 	
 	Syntax
 
 	  [y,ps] = fixunknowns(x)
 	  [y,ps] = fixunknowns(x,fp)
 	  y = fixunknowns('apply',x,ps)
 	  x = fixunknowns('reverse',y,ps)
 	  dx_dy = fixunknowns('dx',x,y,ps)
 	  dx_dy = fixunknowns('dx',x,[],ps)
      name = fixunknowns('name');
      fp = fixunkowns('pdefaults');
      names = fixunknowns('pnames');
      fixunknowns('pcheck',fp);
 
 	Description
 	
 	FIXUNKNOWNS processes matrixes by replacing each row containing
    unknown values (represented by NaN) with two rows of information.
    The first row contains the origonal row, with NaN values replaced
    by the row's mean.  The second row contains 1 and 0 values, indicating
    which values in the first row were known or unknown, respectively.
 	  
 	  FIXUNKNOWNS(X) takes these inputs,
 	  X - Single NxQ matrix or a 1xTS row cell array of NxQ matrices.
 	  and returns,
      Y - Each MxQ matrix with M-N rows added (optional).
      PS - Process settings, to allow consistent processing of values.
 
    FIXUNKNOWNS(X,FP) takes empty struct FP of parameters.
    FIXUNKNOWNS('apply',X,PS) returns Y, given X and settings PS.
    FIXUNKNOWNS('reverse',Y,PS) returns X, given Y and settings PS.
    FIXUNKNOWNS('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    FIXUNKNOWNS('dx',X,[],PS)  returns the derivative, less efficiently.
    FIXUNKNOWNS('name') returns the name of this process method.
    FIXUNKNOWNS('pdefaults') returns default process parameter structure.
    FIXUNKNOWNS('pdesc') returns the process parameter descriptions.
    FIXUNKNOWNS('pcheck',fp) throws an error if any parameter is illegal.
 
 	Examples
 
    Here is how to format a matrix with a mixture of known and
    unknown values in its second row.
 	
      x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
      [y1,ps] = fixunknowns(x1)
 
    Next, we apply the same processing settings to new values.
 
      x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
      y2 = fixunknowns('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = fixunknowns('reverse',y1,ps)
 
   See also MAPMINMAX, MAPSTD, PROCESSPCA, REMOVECONSTANTROWS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:00

Size:

4965 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>formgx.m

(back to table of contents)
 FORMGX Form bias and weights into single vector.
 
   Syntax
 
     gX = formgx(net,gB,gIW,gLW)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.
 
   See also GETX, SETX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:04

Size:

962 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>calcgx.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>formx.m

(back to table of contents)
 FORMX Form bias and weights into single vector.
 
   Syntax
 
     X = formx(net,B,IW,LW)
 
   Description
 
     This function takes weight matrices and bias vectors
     for a network and reshapes them into a single vector.
 
     X = FORMX(NET,B,IW,LW) takes these arguments,
       NET - Neural network.
       B   - Nlx1 cell array of bias vectors.
       IW  - NlxNi cell array of input weight matrices.
       LW  - NlxNl cell array of layer weight matrices.
     and returns,
       X   - Vector of weight and bias values.
 
   Examples
 
     Here we create a network with a 2-element input, and one
     layer of 3 neurons.
 
       net = newff([0 1; -1 1],[3]);
 
     We can get view its weight matrices and bias vectors as follows:
 
       b = net.b
       iw = net.iw
       lw = net.lw
 
     We can put these values into a single vector as follows:
 
       x = formx(net,net.b,net.iw,net.lw)
 
   See also GETX, SETX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:28

Size:

1665 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>getx.m

(back to table of contents)
 GETX Get all network weight and bias values as a single vector.
 
   Syntax
 
     X = getx(net)
 
   Description
 
     This function gets a networks weight and biases as
     a vector of values.
 
     X = GETX(NET)
       NET - Neural network.
       X   - Vector of weight and bias values.
 
   Examples
 
     Here we create a network with a 2-element input, and one
     layer of 3 neurons.
 
       net = newff([0 1; -1 1],[3]);
 
     We can get its weight and bias values as follows:
 
       net.iw{1,1}
       net.b{1}
 
     We can get these values as a single vector as follows:
 
       x = getx(net);
 
   See also SETX, FORMX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:10

Size:

1370 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trains.m
ApplicationRoot>WavixIV>neural501>trainscg.m
ApplicationRoot>WavixIV>neural501>@network>sim.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>gridtop.m

(back to table of contents)
 GRIDTOP Grid layer topology function.
 
   Syntax
 
     pos = gridtop(dim1,dim2,...,dimN)
 
   Description
 
     GRIDTOP calculates neuron positions for layers whose
     neurons are arranged in an N dimensional grid.
 
     GRIDTOP(DIM1,DIM2,...,DIMN) takes N arguments,
       DIMi - Length of layer in dimension i.
     and returns an NxS matrix of N coordinate vectors
     where S is the product of DIM1*DIM2*...*DIMN.
 
   Examples
 
     This code creates and displays a two-dimensional layer
     with 40 neurons arranged in a 8x5 grid.
 
       pos = gridtop(8,5); plotsom(pos)
 
     This code plots the connections between the same neurons,
     but shows each neuron at the location of its weight vector.
     The weights are generated randomly so the layer is
     very unorganized as is evident in the following plot.
 
       W = rands(40,2); plotsom(W,dist(pos))
 
   See also HEXTOP, RANDTOP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:48

Size:

1413 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>hardlim.m

(back to table of contents)
 HARDLIM Hard limit transfer function.
 	
 	Syntax
 
 	  A = hardlim(N,FP)
    dA_dN = hardlim('dn',N,A,FP)
 	  INFO = hardlim(CODE)
 
 	Description
 
 	  HARDLIM is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  HARDLIM(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ boolean matrix with 1's where N >= 0.
 	
    HARDLIM('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    HARDLIM('name') returns the name of this function.
    HARDLIM('output',FP) returns the [min max] output range.
    HARDLIM('active',FP) returns the [min max] active input range.
    HARDLIM('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    HARDLIM('fpnames') returns the names of the function parameters.
    HARDLIM('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here is how to create a plot of the HARDLIM transfer function.
 	
 	    n = -5:0.1:5;
 	    a = hardlim(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'hardlim';
 
 	Algorithm
 
 	    hardlim(n) = 1, if n >= 0
 	                 0, otherwise
 
 	See also SIM, HARDLIMS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:08

Size:

2656 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>hardlims.m

(back to table of contents)
 HARDLIMS Symmetric hard limit transfer function.
 	
 	Syntax
 
 	  A = hardlims(N,FP)
    dA_dN = hardlims('dn',N,A,FP)
 	  INFO = hardlims(CODE)
 
 	Description
 	
 	  HARDLIMS is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  HARDLIMS(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ +1/-1 matrix with +1's where N >= 0.
 	
    HARDLIMS('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    HARDLIMS('name') returns the name of this function.
    HARDLIMS('output',FP) returns the [min max] output range.
    HARDLIMS('active',FP) returns the [min max] active input range.
    HARDLIMS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    HARDLIMS('fpnames') returns the names of the function parameters.
    HARDLIMS('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here is how to create a plot of the HARDLIMS transfer function.
 	
 	    n = -5:0.1:5;
 	    a = hardlims(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'hardlims';
 
 	Algorithm
 
 	    hardlims(n) = 1, if n >= 0
 	                 -1, otherwise
 
 	See also SIM, HARDLIMS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:08

Size:

2700 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>hextop.m

(back to table of contents)
 HEXTOP Hexagonal layer topology function.
 
   Syntax
 
     pos = hextop(dim1,dim2,...,dimN)
 
   Description
 
     HEXTOP calculates the neuron positions for layers whose
     neurons are arranged in a N dimensional hexagonal pattern.
 
     HEXTOP(DIM1,DIM2,...,DIMN) takes N arguments,
       DIMi - Length of layer in dimension i.
     and returns an NxS matrix of N coordinate vectors
     where S is the product of DIM1*DIM2*...*DIMN.
 
   Examples
 
     This code creates and displays a two-dimensional layer
     with 40 neurons arranged in a 8x5 hexagonal pattern.
 
       pos = hextop(8,5); plotsom(pos)
 
     This code plots the connections between the same neurons,
     but shows each neuron at the location of its weight vector.
     The weights are generated randomly so that the layer is
     very disorganized, as is evident in the following plot.
 
       W = rands(40,2); plotsom(W,dist(pos))
 
   See also GRIDTOP, RANDTOP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:48

Size:

1710 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>randtop.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>hintonw.m

(back to table of contents)
 HINTONW Hinton graph of weight matrix.
 
   Syntax
 
     hintonw(W,maxw,minw)
 
   Description
   
     HINTONW(W,MAXW,MINW) takes these inputs,
       W    - SxR weight matrix
       MAXW - Maximum weight, default = max(max(abs(W))).
       MINW - Minimum weight, default = M1/100.
     and displays a weight matrix represented as a grid of squares.
   
     Each square's AREA represents a weight's magnitude.
     Each square's COLOR represents a weight's sign.
     RED for negative weights, GREEN for positive.
 
   Examples
 
     W = rands(4,5);
     hintonw(W)
   
   See also HINTONWB.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:24

Size:

2212 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>hintonwb.m

(back to table of contents)
 HINTONWB Hinton graph of weight matrix and bias vector.
 
   Syntax
 
     hintonwb(W,b,maxw,minw)
 
   Description
   
     HINTONWB(W,B,M1,M2)
       W    - SxR weight matrix
       B    - Sx1 bias vector.
       MAXW - Maximum weight, default = max(max(abs(W))).
       MINW - Minimum weight, default = M1/100.
     and displays a weight matrix and a bias vector represented
     as a grid of squares.
   
     Each square's AREA represents a weight's magnitude.
     Each square's COLOR represents a weight's sign.
     RED for negative weights, GREEN for positive.
 
   Examples
 
     W = rands(4,5);
     b = rands(4,1);
     hintonwb(W,b)
   
   See also HINTONW.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:26

Size:

2671 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>ind2vec.m

(back to table of contents)
 IND2VEC Convert indices to vectors.
 
   Syntax
 
     vec = ind2vec(ind)
 
   Description
 
     IND2VEC and VEC2IND allow indices to be represented
     either by themselves, or as vectors containing a 1 in the
     row of the index they represent.
 
     IND2VEC(IND) takes one argument,
       IND - Row vector of indices.
     and returns sparse matrix of vectors, with one 1 in
     each column, as indicated by IND.
 
   Examples
 
     Here four indices are defined and converted to vector
     representation.
 
       ind = [1 3 2 3]
       vec = ind2vec(ind)
 
   See also VEC2IND.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:16

Size:

802 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>initcon.m

(back to table of contents)
 INITCON Conscience bias initialization function.
   
   Syntax
 
     b = initcon(s,pr);
 
    Description
 
     INITCON is a bias initialization function that initializes
     biases for learning with the LEARNCON learning function.
 
     INITCON(S,PR) takes two arguments
       S  - Number of rows (neurons).
       PR - Rx2 matrix of R = [Pmin Pmax], default = [1 1].
     and returns an Sx1 bias vector.
 
     Note that for biases, R is always 1.  INITCON could
     also be used to initialize weights, but it is not
     recommended for that purpose.
 
   Examples
 
     Here initial bias values are calculated a 5 neuron layer.
 
       b = initcon(5)
 
   Network Use
 
     You can create a standard network that uses INITCON to initialize
     weights by calling NEWC.
 
     To prepare the bias of layer i of a custom network
     to initialize with INITCON:
     1) Set NET.initFcn to 'initlay'.
        (NET.initParam will automatically become INITLAY's default parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set NET.biases{i}.initFcn to 'initcon'.
 
     To initialize the network call INIT.
 
     See NEWC for initialization examples.
 
   Algorithm
 
     LEARNCON updates biases so that each bias value b(i) is
     a function of the average output c(i) of the neuron i associated
     with the bias.
 
     INITCON gets initial bias values by assuming that each
     neuron has responded to equal numbers of vectors in the "past".
 
   See also INITWB, INITLAY, INIT, LEARNCON.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:26

Size:

1837 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2c.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>initlay.m

(back to table of contents)
 INITLAY Layer-by-layer network initialization function.
 
   Syntax
 
     net = initlay(net)
     info = initlay(code)
 
   Description
 
     INITLAY is a network initialization function which
     initializes each layer i according to its own initialization
     function NET.layers{i}.initFcn.
 
     INITLAY(NET) takes:
       NET - Neural network.
     and returns the network with each layer updated.
 
     INITLAY(CODE) return useful information for each CODE string:
       'pnames'    - Names of initialization parameters.
       'pdefaults' - Default initialization parameters.
 
     INITLAY does not have any initialization parameters.
 
   Network Use
 
     You can create a standard network that uses INITLAY by calling
     NEWP, NEWLIN, NEWFF, NEWCF, and many other new network functions.
 
     To prepare a custom network to be initialized with INITLAY:
     1) Set NET.initFcn to 'initlay'.
        (This will set NET.initParam to the empty matrix [] since
        INITLAY has no initialization parameters.)
     2) Set each NET.layers{i}.initFcn to a layer initialization function.
        (Examples of such functions are INITWB and INITNW).
 
     To initialize the network call INIT.
 
     See NEWP and NEWLIN for initialization examples.
 
   Algorithm
 
     The weights and biases of each layer i are initialized according
     to NET.layers{i}.initFcn.
 
   See also INITWB, INITNW, INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:26

Size:

1941 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>initnw.m

(back to table of contents)
 INITNW Nguyen-Widrow layer initialization function.
 
   Syntax
 
     net = initnw(net,i)
 
   Description
 
     INITNW is a layer initialization function which initializes
     a layer's weights and biases according to the Nguyen-Widrow
     initialization algorithm.  This algorithm chooses values in order
     to distribute the active region of each neuron in the layer
     evenly across the layer's input space.
 
     INITNW(NET,i) takes two arguments,
       NET - Neural network.
       i   - Index of a layer.
     and returns the network with layer i's weights and biases updated.
 
   Network Use
 
     You can create a standard network that uses INITNW by calling
     NEWFF or NEWCF.
 
     To prepare a custom network to be initialized with INITNW:
     1) Set NET.initFcn to 'initlay'.
        (This will set NET.initParam to the empty matrix [] since
        INITLAY has no initialization parameters.)
     2) Set NET.layers{i}.initFcn to 'initnw'.
 
     To initialize the network call INIT.
 
     See NEWFF and NEWCF for training examples.
 
   Algorithm
 
     The Nguyen-Widrow method generates initial weight and bias
     values for a layer so that the active regions of the layer's
     neurons will be distributed roughly evenly over the input space.
 
     Advantages over purely random weights and biases are:
     (1) Few neurons are wasted (since all the neurons are in the input space).
     (2) Training works faster (since each area of the input space has neurons).
 
     The Nguyen-Widrow method can only be applied to layers...
     ...with a bias,
     ...with weights whose "weightFcn" is DOTPROD,
     ...with "netInputFcn" set to NETSUM.
     If these conditions are not met then INITNW uses RANDS to
     initialize the layer's weights and biases.
 
   See also INITLAY, INITWB, INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:28

Size:

7342 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>randnr.m
ApplicationRoot>WavixIV>neural501>rands.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>initwb.m

(back to table of contents)
 INITWB By-weight-and-bias layer initialization function.
 
   Syntax
 
     net = initwb(net,i)
   
   Description
 
     INITWB is a layer initialization function which initializes
     a layer's weights and biases according to their own initialization
     functions.
 
     INITWB(NET,i) takes two arguments,
       NET - Neural network.
       i   - Index of a layer.
     and returns the network with layer i's weights and biases updated.
 
   Network Use
 
     You can create a standard network that uses INITWB by calling
     NEWP or NEWLIN.
 
     To prepare a custom network to be initialized with INITWB:
     1) Set NET.initFcn to 'initlay'.
        (This will set NET.initParam to the empty matrix [] since
        INITLAY has no initialization parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set each NET.inputWeights{i,j}.initFcn to a weight initialization function.
        Set each NET.layerWeights{i,j}.initFcn to a weight initialization function.
        Set each NET.biases{i}.initFcn to a bias initialization function.
        (Examples of such functions are RANDS and MIDPOINT.)
 
     To initialize the network call INIT.
 
     See NEWP and NEWLIN for training examples.
 
   Algorithm
 
     Each weight (bias) in layer i is set to new values calculated
     according to its weight (bias) initialization function.
 
   See also INITNW, INITLAY, INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:28

Size:

3050 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>initzero.m

(back to table of contents)
 INITZERO Zero weight/bias initialization function.
   
   Syntax
 
     W = initzero(S,PR)
     b = initzero(S,[1 1])
 
   Description
 
     INITZERO(S,PR) takes these arguments,
       S - Number of rows (neurons).
       PR - Rx2 matrix of input value ranges = [Pmin Pmax].
     and returns an SxR weight matrix of zeros.
 
     INITZERO(S,[1 1])
     returns an Sx1 bias vector of zeros.
   
   Examples
 
     Here initial weights and biases are calculated for
     a layer with two inputs ranging over [0 1] and [-2 2],
     and 4 neurons.
 
       W = initzero(5,[0 1; -2 2])
       b = initzero(5,[1 1])
 
   Network Use
 
     You can create a standard network that uses INITZERO to initialize
     its weights by calling NEWP or NEWLIN.
 
     To prepare the weights and the bias of layer i of a custom network
     to be initialized with MIDPOINT:
     1) Set NET.initFcn to 'initlay'.
        (NET.initParam will automatically become INITLAY's default parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set each NET.inputWeights{i,j}.initFcn to 'initzero'.
        Set each NET.layerWeights{i,j}.initFcn to 'initzero';
        Set each NET.biases{i}.initFcn to 'initzero';
 
     To initialize the network call INIT.
 
     See NEWP or NEWLIN for initialization examples.
 
   See also INITWB, INITLAY, INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:30

Size:

1596 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learncon.m

(back to table of contents)
 LEARNCON Conscience bias learning function.
 
   Syntax
   
     [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learncon(code)
 
   Description
 
     LEARNCON is the conscience bias learning function
     used to increase the net input to neurons which
     have the lowest average output until each neuron
     responds roughly an equal percentage of the time.
 
     LEARNCON(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       B  - Sx1 bias vector.
       P  - 1xQ ones vector.
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns
       dB - Sx1 weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNCON's learning parameter,
     shown here with its default value.
       LP.lr - 0.001 - Learning rate
 
     LEARNCON(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
     NNT 2.0 compatibility: The LP.lr described above equals
     1 minus the bias time constant used by TRAINC in NNT 2.0.
 
   Examples
 
     Here we define a random output A, and bias vector W for a
     layer with 3 neurons.  We also define the learning rate LR.
 
       a = rand(3,1);
       b = rand(3,1);
       lp.lr = 0.5;
 
     Since LEARNCON only needs these values to calculate a bias
     change (see Algorithm below), we will use them to do so.
 
       dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the bias of layer i of a custom network
     to learn with LEARNCON:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set NET.inputWeights{i}.learnFcn to 'learncon'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learncon'.
        (Each weight learning parameter property will automatically
        be set to LEARNCON's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (or NET.adaptParam) properties as desired.
     2) Call TRAIN (or ADAPT).
 
   Algorithm
 
     LEARNCON calculates the bias change db for a given neuron
     by first updating each neuron's "conscience", i.e. the
     running average of its output:
 
       c = (1-lr)*c + lr*a
 
     The conscience is then used to compute a bias for the
     neuron that is greatest for smaller conscience values.
 
       b = exp(1-log(c)) - b
 
     (Note that LEARNCON is able to recover C each time it
      is called from the bias values.)
 
   See also LEARNK, LEARNOS, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:34

Size:

4009 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learngd.m

(back to table of contents)
 LEARNGD Gradient descent weight/bias learning function.
   
   Syntax
   
     [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     [db,LS] = learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learngd(code)
 
   Description
 
     LEARNGD is the gradient descent weight/bias learning function.
   
     LEARNGD(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNGD's learning parameter
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNGD(CODE) return useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random gradient gW for a weight going
     to a layer with 3 neurons, from an input with 2 elements.
     We also define a learning rate of 0.5.
 
       gW = rand(3,2);
       lp.lr = 0.5;
 
     Since LEARNGD only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])
 
   Network Use
 
     You can create a standard network that uses LEARNGD with NEWFF,
     NEWCF, or NEWELM.
 
     To prepare the weights and the bias of layer i of a custom network
     to adapt with LEARNGD:
     1) Set NET.adaptFcn to 'trains'.
        NET.adaptParam will automatically become TRAINS's default parameters.
     2) Set each NET.inputWeights{i,j}.learnFcn to 'learngd'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learngd'.
        Set NET.biases{i}.learnFcn to 'learngd'.
        Each weight and bias learning parameter property will automatically
        be set to LEARNGD's default parameters.
 
     To allow the network to adapt:
     1) Set NET.adaptParam properties to desired values.
     2) Call ADAPT with the network.
 
     See NEWFF or NEWCF for examples.
     
   Algorithm
 
     LEARNGD calculates the weight change dW for a given neuron from
     the neuron's input P and error E, and the weight (or bias) learning
     rate LR, according to the gradient descent:
 
       dw = lr*gW
 
   See also LEARNGDM, NEWFF, NEWCF, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:36

Size:

3502 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learngdm.m

(back to table of contents)
 LEARNGDM Gradient descent w/momentum weight/bias learning function.
   
   Syntax
   
     [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     [db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learngdm(code)
 
   Description
 
     LEARNGDM is the gradient descent with momentum weight/bias
     learning function.
   
     LEARNGDM(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNGDM's learning parameters,
     shown here with their default values.
       LP.lr - 0.01 - Learning rate
       LP.mc - 0.9  - Momentum constant
 
     LEARNGDM(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random gradient G for a weight going
     to a layer with 3 neurons, from an input with 2 elements.
     We also define a learning rate of 0.5 and momentum constant
     of 0.8;
 
       gW = rand(3,2);
       lp.lr = 0.5;
       lp.mc = 0.8;
 
     Since LEARNGDM only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
     We will use the default initial learning state.
  
       ls = [];
       [dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)
 
     LEARNGDM returns the weight change and a new learning state.
 
   Network Use
 
     You can create a standard network that uses LEARNGD with NEWFF,
     NEWCF, or NEWELM.
 
     To prepare the weights and the bias of layer i of a custom network
     to adapt with LEARNGDM:
     1) Set NET.adaptFcn to 'trains'.
        NET.adaptParam will automatically become TRAINS's default parameters.
     2) Set each NET.inputWeights{i,j}.learnFcn to 'learngdm'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learngdm'.
        Set NET.biases{i}.learnFcn to 'learngdm'.
        Each weight and bias learning parameter property will automatically
        be set to LEARNGDM's default parameters.
 
     To allow the network to adapt:
     1) Set NET.adaptParam properties to desired values.
     2) Call ADAPT with the network.
 
     See NEWFF or NEWCF for examples.
     
   Algorithm
 
     LEARNGDM calculates the weight change dW for a given neuron
     from the neuron's input P and error E, the weight (or bias)
     learning rate LR, and momentum constant MC, according to
     gradient descent with momentum:
 
       dW = mc*dWprev + (1-mc)*lr*gW
 
     The previous weight change dWprev is stored and read
     from the learning state LS.
 
   See also LEARNGD, NEWFF, NEWCF, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:36

Size:

4145 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnh.m

(back to table of contents)
 LEARNH Hebb weight learning rule.
 
   Syntax
   
     [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnh(code)
 
   Description
 
     LEARNH is the Hebb weight learning function.
 
     LEARNH(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNH's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNH(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P and output A for a layer
     with a 2-element input and 3 neurons.  We also define the
     learning rate LR.
 
       p = rand(2,1);
       a = rand(3,1);
       lp.lr = 0.5;
 
     Since LEARNH only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNH:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnh'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnh'.
        (Each weight learning parameter property will automatically
        be set to LEARNH's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
   Algorithm
 
     LEARNH calculates the weight change dW for a given neuron from the
     neuron's input P, output A, and learning rate LR according to the
     Hebb learning rule:
 
       dw =  lr*a*p'
 
   See also LEARNHD, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:38

Size:

3478 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnhd.m

(back to table of contents)
 LEARNHD Hebb with decay weight learning rule.
 
   Syntax
   
     [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnhd(code)
 
   Description
 
     LEARNHD is the Hebb weight learning function.
 
     LEARNHD(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNHD's learning parameters
     shown here with default values.
       LP.dr - 0.01 - Decay rate.
       LP.lr - 0.1  - Learning rate
 
     LEARNHD(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, and weights W
     for a layer with a 2-element input and 3 neurons.  We also
     define the decay and learning rates.
 
       p = rand(2,1);
       a = rand(3,1);
       w = rand(3,2);
       lp.dr = 0.05;
       lp.lr = 0.5;
 
     Since LEARNHD only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNHD:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnhd'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnhd'.
        (Each weight learning parameter property will automatically
        be set to LEARNHD's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
   Algorithm
 
     LEARNHD calculates the weight change dW for a given neuron from the
     neuron's input P, output A, decay rate DR, and learning rate LR
     according to the Hebb with decay learning rule:
 
       dw =  lr*a*p' - dr*w
 
   See also LEARNH, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:38

Size:

3672 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnis.m

(back to table of contents)
 LEARNIS Instar weight learning function.
 
   Syntax
   
     [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnis(code)
 
   Description
 
     LEARNIS is the instar weight learning function.
 
     LEARNIS(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNIS's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNIS(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, and weight matrix W
     for a layer with a 2-element input and 3 neurons.  We also define
     the learning rate LR.
 
       p = rand(2,1);
       a = rand(3,1);
       w = rand(3,2);
       lp.lr = 0.5;
 
     Since LEARNIS only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     so that it can learn with LEARNIS:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnis'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnis'.
        (Each weight learning parameter property will automatically
        be set to LEARNIS's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
   Algorithm
 
     LEARNIS calculates the weight change dW for a given neuron from the
     neuron's input P, output A, and learning rate LR according to the
     instar learning rule:
 
       dw =  lr*a*(p'-w)
 
   See also LEARNK, LEARNOS, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:40

Size:

3726 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnk.m

(back to table of contents)
 LEARNK Kohonen weight learning function.
 
   Syntax
   
     [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnk(code)
 
   Description
 
     LEARNK is the Kohonen weight learning function.
 
     LEARNK(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNK's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNK(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, and weight matrix W
     for a layer with a 2-element input and 3 neurons.  We also define
     the learning rate LR.
 
       p = rand(2,1);
       a = rand(3,1);
       w = rand(3,2);
       lp.lr = 0.5;
 
     Since LEARNK only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the weights of layer i of a custom network
     to learn with LEARNK:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnk'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnk'.
        (Each weight learning parameter property will automatically
        be set to LEARNK's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (or NET.adaptParam) properties as desired.
     2) Call TRAIN (or ADAPT).
 
   Algorithm
 
     LEARNK calculates the weight change dW for a given neuron from
     the neuron's input P, output A, and learning rate LR according
     to the Kohenen learning rule:
 
       dw =  lr*(p'-w), if a ~= 0
          =  0, otherwise
 
   See also LEARNIS, LEARNOS, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:40

Size:

3729 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnlv1.m

(back to table of contents)
 LEARNLV1 LVQ1 weight learning function.
 
   Syntax
   
     [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnlv1(code)
 
   Description
 
     LEARNLV1 is the LVQ1 weight learning function.
 
     LEARNLV1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR weight gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNLV1's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNLV1(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, weight matrix W, and
     output gradient gA for a layer with a 2-element input and 3 neurons.
     We also define the learning rate LR.
 
       p = rand(2,1);
       w = rand(3,2);
       a = compet(negdist(w,p));
       gA = [-1;1; 1];
       lp.lr = 0.5;
 
     Since LEARNLV1 only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])
 
   Network Use
 
     You can create a standard network that uses LEARNLV1 with NEWLVQ.
 
     To prepare the weights of layer i of a custom network
     to learn with LEARNLV1:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnlv1'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnlv1'.
        (Each weight learning parameter property will automatically
        be set to LEARNLV1's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (or NET.adaptParam) properties as desired.
     2) Call TRAIN (or ADAPT).
 
   Algorithm
 
     LEARNLV1 calculates the weight change dW for a given neuron from
     the neuron's input P, output A, output gradient gA and learning rate LR,
     according to the LVQ1 rule, given i the index of the neuron whose
     output a(i) is 1:
 
       dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0
               = -lr*(p-w(i,:)) if gA(i) = -1
 
   See also LEARNLV2, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:42

Size:

3882 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnlv2.m

(back to table of contents)
 LEARNLV2 LVQ 2.1 weight learning function.
 
   Syntax
   
     [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnlv2(code)
 
   Description
 
     LEARNLV2 is the LVQ2 weight learning function.
 
     LEARNLV2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR weight gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNLV1's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
      LP.window - 0.25 - Window size (0 to 1, typically 0.2 to 0.3).
 
     LEARNLV2(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a sample input P, output A, weight matrix W, and
     output gradient gA for a layer with a 2-element input and 3 neurons.
     We also define the learning rate LR.
 
       p = [0;1];
       w = [-1 1; 1 0; 1 1];
       n = negdist(w,p);
       a = compet(n);
       gA = [-1;1;1];
       lp.lr = 0.5;
      lp.window = 0.25;
 
     Since LEARNLV2 only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])
 
   Network Use
 
    LEARNLV2 should only be used to train networks which have already
    been trained with LEARNLV1.
 
     You can create a standard network that uses LEARNLV2 with NEWLVQ.
 
     To prepare the weights of layer i of a custom network, or a
    network which has been trained with LEARNLV1, to learn with LEARNLV2,
    do the following:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnlv2'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnlv2'.
        (Each weight learning parameter property will automatically
        be set to LEARNLV2's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (or NET.adaptParam) properties as desired.
     2) Call TRAIN (or ADAPT).
 
   Algorithm
 
     LEARNLV2 implements Learning Vector Quantization 2.1 which works as
    follows.  For each presentation examine the winning neuron k1 and the
    runner up neuron k2.  If one of them is in the correct class and the
    the other is not, then indicate the one that is incorrect as neuron i,
    and the one that is correct as neuron j.  Also assign the distance
    from neuron k1 to the input as d1, and the distance from neuron k2
    to the input as k2.
 
    If the ratio of distances falls into a window as follows,
 
      min(di/dj, dj/di) > (1-window)/(1+window)
 
    then move the incorrect neuron i away from the input vector, and
    move the correct neuron j toward the input according to:
 
      dw(i,:) = - lp.lr*(p'-w(i,:))
      dw(j,:) = + lp.lr*(p'-w(j,:))
 
   See also LEARNLV1, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:42

Size:

5419 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnos.m

(back to table of contents)
 LEARNOS Outstar weight learning function.
 
   Syntax
   
     [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnos(code)
 
   Description
 
     LEARNOS is the outstar weight learning function.
 
     LEARNOS(W,P,Z,N,A,T,E,G,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNOS's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNOS(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, and weight matrix W
     for a layer with a 2-element input and 3 neurons.  We also define
     the learning rate LR.
 
       p = rand(2,1);
       a = rand(3,1);
       w = rand(3,2);
       lp.lr = 0.5;
 
     Since LEARNOS only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNOS:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnos'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnos'.
        (Each weight learning parameter property will automatically
        be set to LEARNOS's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
   Algorithm
 
     LEARNOS calculates the weight change dW for a given neuron
     from the neuron's input P, output A, and learning rate LR
     according to the outstar learning rule:
 
       dw =  lr*(a-w)*p'
 
   See also LEARNIS, LEARNK, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:44

Size:

3704 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnp.m

(back to table of contents)
 LEARNP Perceptron weight/bias learning function.
 
   Syntax
   
     [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     [db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnp(code)
 
   Description
 
     LEARNP is the perceptron weight/bias learning function.
 
     LEARNP(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or b, an Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     LEARNP(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P and error E to a layer
     with a 2-element input and 3 neurons.
 
       p = rand(2,1);
       e = rand(3,1);
 
     Since LEARNP only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
 
   Network Use
 
     You can create a standard network that uses LEARNP with NEWP.
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNP:
     1) Set NET.trainFcn to 'trainb'.
        (NET.trainParam will automatically become TRAINB's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnp'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnp'.
        Set NET.biases{i}.learnFcn to 'learnp'.
        (Each weight and bias learning parameter property will automatically
        become the empty matrix since LEARNP has no learning parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
     See NEWP for adaption and training examples.
 
   Algorithm
 
     LEARNP calculates the weight change dW for a given neuron from the
     neuron's input P and error E according to the perceptron learning rule:
 
       dw =  0,  if e =  0
          =  p', if e =  1
          = -p', if e = -1
 
     This can be summarized as:
 
       dw = e*p'
 
   See also LEARNPN, NEWP, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:44

Size:

3956 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnpn.m

(back to table of contents)
 LEARNPN Normalized perceptron weight/bias learning function.
   
   Syntax
   
     [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnpn(code)
 
   Description
 
     LEARNPN is a weight/bias learning function.  It can result
     in faster learning than LEARNP when input vectors have
     widely varying magnitudes.
 
     LEARNPN(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     LEARNPN(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P and error E to a layer
     with a 2-element input and 3 neurons.
 
       p = rand(2,1);
       e = rand(3,1);
 
     Since LEARNPN only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])
 
   Network Use
 
     You can create a standard network that uses LEARNPN with NEWP.
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNPN:
     1) Set NET.trainFcn to 'trainb'.
        NET.trainParam will automatically become TRAINB's default parameters.
     2) Set NET.adaptFcn to 'trains'.
        NET.adaptParam will automatically become TRAINS's default parameters.
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnpn'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnpn'.
        Set NET.biases{i}.learnFcn to 'learnpn'.
        Each weight and bias learning parameter property will automatically
        become the empty matrix since LEARNPN has no learning parameters.
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
     See NEWP for adaption and training examples.
     
   Algorithm
 
     LEARNPN calculates the weight change dW for a given neuron from the
     neuron's input P and error E according to the normalized perceptron
     learning rule:
 
       pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
       dw =  0,   if e =  0
          =  pn', if e =  1
          = -pn', if e = -1
 
     The expression for dW can be summarized as:
 
       dw = e*pn'
 
   See also LEARNP, NEWP, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:46

Size:

3943 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnsom.m

(back to table of contents)
 LEARNSOM Self-organizing map weight learning function.
 
   Syntax
   
     [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnk(code)
 
   Description
 
     LEARNSOM is the self-organizing map weight learning function.
 
     LEARNSOM(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNSOM's learning parameter,
     shown here with its default value.
       LP.order_lr    -  0.9 - Ordering phase learning rate.
       LP.order_steps - 1000 - Ordering phase steps.
       LP.tune_lr     - 0.02 - Tuning phase learning rate.
       LP.tune_nd     -    1 - Tuning phase neighborhood distance.
 
     LEARNSOM(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P, output A, and weight matrix W,
     for a layer with a 2-element input and 6 neurons.  We also calculate
     the positions and distances for the neurons which are arranged in a
     2x3 hexagonal pattern. Then we define the four learning parameters.
 
       p = rand(2,1);
       a = rand(6,1);
       w = rand(6,2);
       pos = hextop(2,3);
       d = linkdist(pos);
       lp.order_lr = 0.9;
       lp.order_steps = 1000;
       lp.tune_lr = 0.02;
       lp.tune_nd = 1;
 
     Since LEARNSOM only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       ls = [];
       [dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)
 
   Network Use
 
     You can create a standard network that uses LEARNSOM with NEWSOM.
 
     To prepare the weights of layer i of a custom network
     to learn with LEARNSOM:
     1) Set NET.trainFcn to 'trainr'.
        (NET.trainParam will automatically become TRAINR's default parameters.)
     2) Set NET.adaptFcn to 'trains'.
        (NET.adaptParam will automatically become TRAINS's default parameters.)
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnsom'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnsom'.
        (Each weight learning parameter property will automatically
        be set to LEARNSOM's default parameters.)
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (or NET.adaptParam) properties as desired.
     2) Call TRAIN (or ADAPT).
 
   Algorithm
 
     LEARNSOM calculates the weight change dW for a given neuron from
     the neuron's input P, activation A2, and learning rate LR:
 
       dw =  lr*a2*(p'-w)
 
     where the activation A2 is found from the layer output A and
     neuron distances D and the current neighborhood size ND:
 
       a2(i,q) = 1,   if a(i,q) = 1
               = 0.5, if a(j,q) = 1 and D(i,j) <= nd
               = 0,   otherwise
 
     The learning rate LR and neighborhood size NS are altered
     through two phases: an ordering phase and a tuning phase.
 
     The ordering phase lasts as many steps as LP.order_steps.
     During this phase LR is adjusted from LP.order_lr down to
     LP.tune_lr, and ND is adjusted from the maximum neuron distance
     down to 1.  It is during this phase that neuron weights are expected
     to order themselves in the input space consistent with
     the associated neuron positions.
 
     During the tuning phase LR decreases slowly from LP.tune_lr and
     ND is always set to LP.tune_nd.  During this phase the weights are
     expected to spread out relatively evenly over the input space while
     retaining their topological order found during the ordering phase.
 
   See also ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:46

Size:

5646 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>learnwh.m

(back to table of contents)
 LEARNWH Widrow-Hoff weight/bias learning function.
   
   Syntax
   
     [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     [db,LS] = learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
     info = learnwh(code)
 
   Description
 
     LEARNWH is the Widrow-Hoff weight/bias learning function,
     and is also known as the delta or least mean squared (LMS) rule.
   
     LEARNWH(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or b, an Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns,
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     Learning occurs according to LEARNWH's learning parameter,
     shown here with its default value.
       LP.lr - 0.01 - Learning rate
 
     LEARNWH(CODE) returns useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Examples
 
     Here we define a random input P and error E to a layer
     with a 2-element input and 3 neurons.  We also define the
     learning rate LR learning parameter.
 
       p = rand(2,1);
       e = rand(3,1);
       lp.lr = 0.5;
 
     Since LEARNWH only needs these values to calculate a weight
     change (see Algorithm below), we will use them to do so.
 
       dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])
 
   Network Use
 
     You can create a standard network that uses LEARNWH with NEWLIN.
 
     To prepare the weights and the bias of layer i of a custom network
     to learn with LEARNWH:
     1) Set NET.trainFcn to 'trainb'.
        NET.trainParam will automatically become TRAINB's default parameters.
     2) Set NET.adaptFcn to 'trains'.
        NET.adaptParam will automatically become TRAINS's default parameters.
     3) Set each NET.inputWeights{i,j}.learnFcn to 'learnwh'.
        Set each NET.layerWeights{i,j}.learnFcn to 'learnwh'.
        Set NET.biases{i}.learnFcn to 'learnwh'.
        Each weight and bias learning parameter property will automatically
        be set to LEARNWH's default parameters.
 
     To train the network (or enable it to adapt):
     1) Set NET.trainParam (NET.adaptParam) properties to desired values.
     2) Call TRAIN (ADAPT).
 
     See NEWLIN for adaption and training examples.
     
   Algorithm
 
     LEARNWH calculates the weight change dW for a given neuron from the
     neuron's input P and error E, and the weight (or bias) learning
     rate LR, according to the Widrow-Hoff learning rule:
 
       dw = lr*e*pn'
 
   See also NEWLIN, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:48

Size:

3978 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>linkdist.m

(back to table of contents)
 LINKDIST Link distance function.
 
   Syntax
 
     d = linkdist(pos);
 
   Description
 
     LINKDIST is a layer distance function used to find
     the distances between the layer's neurons given their
     positions.
 
     LINKDIST(pos) takes one argument,
       POS - NxS matrix of neuron positions.
      and returns the SxS matrix of distances.
 
   Examples
 
     Here we define a random matrix of positions for 10 neurons
     arranged in three dimensional space and find their distances.
 
       pos = rand(3,10);
       D = linkdist(pos)
 
   Network Use
 
     You can create a standard network that uses LINKDIST
     as a distance function by calling NEWSOM.
 
     To change a network so a layer's topology uses LINKDIST set
     NET.layers{i}.distanceFcn to 'linkdist'.
 
     In either case, call SIM to simulate the network with DIST.
     See NEWSOM for training and adaption examples.
 
   Algorithm
 
     The link distance D between two position vectors Pi and Pj
     from a set of S vectors is:
   
       Dij = 0, if i==j
           = 1, if sum((Pi-Pj).^2).^0.5 is <= 1
           = 2, if k exists, Dik = Dkj = 1
           = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1.
           = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
            = S, if none of the above conditions apply.
 
   See also SIM, DIST, MANDIST.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:12

Size:

1831 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>dist.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>logsig.m

(back to table of contents)
 LOGSIG Logarithmic sigmoid transfer function.
 	
 	Syntax
 
 	  A = logsig(N,FP)
    dA_dN = logsig('dn',N,A,FP)
 	  INFO = logsig(CODE)
 
 	Description
 
 	  LOGSIG(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ matrix of N's elements squashed into [0, 1].
 	
    LOGSIG('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    LOGSIG('name') returns the name of this function.
    LOGSIG('output',FP) returns the [min max] output range.
    LOGSIG('active',FP) returns the [min max] active input range.
    LOGSIG('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    LOGSIG('fpnames') returns the names of the function parameters.
    LOGSIG('fpdefaults') returns the default function parameters.
 
 	Examples
 
 	  Here is code for creating a plot of the LOGSIG transfer function.
 	
 	    n = -5:0.1:5;
 	    a = logsig(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'logsig';
 
 	Algorithm
 
 	    logsig(n) = 1 / (1 + exp(-n))
 
 	See also SIM, DLOGSIG, TANSIG.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:10

Size:

2568 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mae.m

(back to table of contents)
 MAE Mean absolute error performance function.
 
   Syntax
 
     perf = mae(E,Y,X,FP)
     dPerf_dy = mae('dy',E,Y,X,perf,FP);
     dPerf_dx = mae('dx',E,Y,X,perf,FP);
     info = mae(code)
 
   Description
 
     MAE is a network performance function.  It measures network
     performance as the mean of absolute errors.
   
     MAE(E,Y,X,PP) takes E and optional function parameters,
       E - Matrix or cell array of error vectors.
       Y - Matrix or cell array of output vectors. (ignored).
       X  - Vector of all weight and bias values (ignored).
       FP - Function parameters (ignored).
      and returns the mean absolute error.
 
     MAE('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     MAE('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
 
     MAE('name') returns the name of this function.
     MAE('pnames') returns the name of this function.
     MAE('pdefaults') returns the default function parameters.
   
   Examples
 
     Here a perceptron is created with a 1-element input ranging
     from -10 to 10, and one neuron.
 
       net = newp([-10 10],1);
 
     Here the network is given a batch of inputs P.  The error
     is calculated by subtracting the output A from target T.
     Then the mean absolute error is calculated.
 
       p = [-10 -5 0 5 10];
       t = [0 0 1 1 1];
       y = sim(net,p)
       e = t-y
       perf = mae(e)
 
     Note that MAE can be called with only one argument because
     the other arguments are ignored.  MAE supports those arguments
     to conform to the standard performance function argument list.
 
   Network Use
 
     You can create a standard network that uses MAE with NEWP.
 
     To prepare a custom network to be trained with MAE, set
     NET.performFcn to 'mae'.  This will automatically set
     NET.performParam to the empty matrix [], as MAE has no
     performance parameters.
 
     In either case, calling TRAIN or ADAPT will result
     in MAE being used to calculate performance.
 
     See NEWP for examples.
 
   See also MSE, MSEREG, DMAE.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:18

Size:

3366 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mandist.m

(back to table of contents)
 MANDIST Manhattan distance weight function.
 
 	Syntax
 
 	  Z = mandist(W,P,FP)
 	  info = mandist(code)
 	  dim = mandist('size',S,R,FP)
 	  dp = mandist('dp',W,P,Z,FP)
 	  dw = mandist('dw',W,P,Z,FP)
 	  D = mandist(pos);
 
 	Description
 
 	  MANDIST is the Manhattan distance weight function. Weight
 	  functions apply weights to an input to get weighted inputs.
 
 	  MANDIST(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ matrix of vector distances.
 
 	  MANDIST(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
 	    'fullderiv'  - Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 	  MANDIST('size',S,R,FP) takes the layer dimension S, input dimention R,
 	  and function parameters, and returns the weight size [SxR].
 
 	  MANDIST('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
 	  MANDIST('size',S,R,FP) returns the derivative of Z with respect to W.
 
 	  MANDIST is also a layer distance function which can be used
 	  to find distances between neurons in a layer.
 
 	  MANDIST(POS) takes one argument,
 	    POS - S row matrix of neuron positions.
 	  and returns the SxS matrix of distances.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,3);
 	    P = rand(3,1);
 	    Z = mandist(W,P)
 
 	  Here we define a random matrix of positions for 10 neurons
 	  arranged in three dimensional space and then find their distances.
 
 	    pos = rand(3,10);
 	    D = mandist(pos)
 
 	Network Use
 
 	  You can create a standard network that uses MANDIST
 	  as a distance function by calling NEWSOM.
 
 	  To change a network so an input weight uses MANDIST set
 	  NET.inputWeight{i,j}.weightFcn to 'mandist.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'mandist'.
 
 	  To change a network so a layer's topology uses MANDIST set
 	  NET.layers{i}.distanceFcn to 'mandist'.
 
 	  In either case, call SIM to simulate the network with DIST.
 	  See NEWPNN or NEWGRNN for simulation examples.
 
 	Algorithm
 
 	  The Manhattan distance D between two vectors X and Y is:
 	
 	    D = sum(abs(x-y))
 
 	See also SIM, DIST, LINKDIST.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:22

Size:

4694 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mapminmax.m

(back to table of contents)
 MAPMINMAX Map matrix row minimum and maximum values to [-1 1].
   
   Syntax
 
 	  [y,ps] = mapminmax(x,ymin,ymax)
 	  [y,ps] = mapminmax(x,fp)
 	  y = mapminmax('apply',x,ps)
 	  x = mapminmax('reverse',y,ps)
 	  dx_dy = mapminmax('dx',x,y,ps)
 	  dx_dy = mapminmax('dx',x,[],ps)
      name = mapminmax('name');
      fp = mapminmax('pdefaults');
      names = mapminmax('pnames');
      mapminmax('pcheck', fp);
 
   Description
   
    MAPMINMAX processes matrices by normalizing the minimum and maximum values
    of each row to [YMIN, YMAX].
   
 	  MAPMINMAX(X,YMIN,YMAX) takes X and optional parameters,
 	  X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
      YMIN - Minimum value for each row of Y. (Default is -1)
      YMAX - Maximum value for each row of Y. (Default is +1)
 	  and returns,
      Y - Each MxQ matrix (where M == N) (optional).
      PS - Process settings, to allow consistent processing of values.
 
    MAPMINMAX(X,FP) takes parameters as struct: FP.ymin, FP.ymax.
    MAPMINMAX('apply',X,PS) returns Y, given X and settings PS.
    MAPMINMAX('reverse',Y,PS) returns X, given Y and settings PS.
    MAPMINMAX('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    MAPMINMAX('dx',X,[],PS)  returns the derivative, less efficiently.
    MAPMINMAX('name') returns the name of this process method.
    MAPMINMAX('pdefaults') returns default process parameter structure.
    MAPMINMAX('pdesc') returns the process parameter descriptions.
    MAPMINMAX('pcheck',fp) throws an error if any parameter is illegal.
     
 	Examples
 
    Here is how to format a matrix so that the minimum and maximum
    values of each row are mapped to default interval [-1,+1].
 	
      x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
      [y1,ps] = mapminmax(x1)
 
    Next, we apply the same processing settings to new values.
 
      x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
      y2 = mapminmax('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = mapminmax('reverse',y1,ps)
 
   Algorithm
 
      It is assumed that X has only finite real values, and that
      the elements of each row are not all equal.
 
      y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
 
   See also FIXUNKNOWNS, MAPSTD, PROCESSPCA, REMOVECONSTANTROWS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:00

Size:

4793 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mapstd.m

(back to table of contents)
 MAPSTD Map matrix row means and deviations to standard values.
   
   Syntax
 
 	  [y,ps] = mapstd(ymean,ystd)
 	  [y,ps] = mapstd(x,fp)
 	  y = mapstd('apply',x,ps)
 	  x = mapstd('reverse',y,ps)
 	  dx_dy = mapstd('dx',x,y,ps)
 	  dx_dy = mapstd('dx',x,[],ps)
      name = mapstd('name');
      fp = mapstd('pdefaults');
      names = mapstd('pnames');
      mapstd('pcheck',fp);
 
   Description
   
    MAPSTD processes matrices by tranforming the mean and standard
    deviation of each row to YMEAN and YSTD.
   
 	  MAPSTD(X,YMEAN,YSTD) takes X and optional parameters,
 	  X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
      YMEAN - Mean value for each row of Y. (Default is 0)
      YSTD - Standard deviation for each row of Y. (Default is 1)
 	  and returns,
      Y - Each MxQ matrix (where M == N) (optional).
      PS - Process settings, to allow consistent processing of values.
 
    MAPSTD(X,FP) takes parameters as struct: FP.ymean, FP.ystd.
    MAPSTD('apply',X,PS) returns Y, given X and settings PS.
    MAPSTD('reverse',Y,PS) returns X, given Y and settings PS.
    MAPSTD('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    MAPSTD('dx',X,[],PS)  returns the derivative, less efficiently.
    MAPSTD('name') returns the name of this process method.
    MAPSTD('pdefaults') returns default process parameter structure.
    MAPSTD('pdesc') returns the process parameter descriptions.
    MAPSTD('pcheck',fp) throws an error if any parameter is illegal.
     
 	Examples
 
    Here is how to format a matrix so that the minimum and maximum
    values of each row are mapped to default mean and std of 0 and 1.
 	
      x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
      [y1,ps] = mapstd(x1)
 
    Next, we apply the same processing settings to new values.
 
      x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
      y2 = mapstd('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = mapstd('reverse',y1,ps)
 
   Algorithm
 
      It is assumed that X has only finite real values, and that
      the elements of each row are not all equal.
 
      y = (x-xmean)*(ystd/xstd) + ymean;
 
   See also MAPMINMAX, FIXUNKNOWNS, PROCESSPCA, REMOVECONSTANTROWS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:02

Size:

4512 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>maxlinlr.m

(back to table of contents)
 MAXLINLR Maximum learning rate for a linear layer.
 
   Syntax
 
     lr = maxlinlr(P)
     lr = maxlinlr(P,'bias')
 
   Description
 
     MAXLINLR is used to calculate learning rates for NEWLIN.
   
     MAXLINLR(P) takes one argument,
       P - RxQ matrix of input vectors.
     and returns the maximum learning rate for a linear layer
     without a bias that is to be trained only on the vectors in P.
 
     MAXLINLR(P,'bias') return the maximum learning rate for
     a linear layer with a bias.
   
   Examples
 
     Here we define a batch of 4 2-element input vectors and
     find the maximum learning rate for a linear layer with
     a bias.
 
       P = [1 2 -4 7; 0.1 3 10 6];
       lr = maxlinlr(P,'bias')
   
   See also LEARNWH.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:18:56

Size:

1137 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newlin.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>midpoint.m

(back to table of contents)
 MIDPOINT Midpoint weight initialization function.
 
   Syntax
 
     W = midpoint(S,PR)
 
   Description
 
     MIDPOINT is a weight initialization function that
     sets weight (row) vectors to the center of the
     input ranges.
   
   MIDPOINT(S,PR) takes two arguments,
     S  - Number of rows (neurons).
     PR - Rx2 matrix of input value ranges = [Pmin Pmax].
   and returns an SxR matrix with rows set to (Pmin+Pmax)'/2.
   
   Examples
 
     Here initial weight values are calculated for a 5 neuron
     layer with input elements ranging over [0 1] and [-2 2].
 
       W = midpoint(5,[0 1; -2 2])
 
   Network Use
 
     You can create a standard network that uses MIDPOINT to initialize
     weights by calling NEWC.
 
     To prepare the weights and the bias of layer i of a custom network
     to initialize with MIDPOINT:
     1) Set NET.initFcn to 'initlay'.
        (NET.initParam will automatically become INITLAY's default parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set each NET.inputWeights{i,j}.initFcn to 'midpoint'.
        Set each NET.layerWeights{i,j}.initFcn to 'midpoint';
 
     To initialize the network call INIT.
 
     See NEWC for initialization examples.
 
   See also INITWB, INITLAY, INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:30

Size:

1861 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>nntobsu.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>minmax.m

(back to table of contents)
 MINMAX Ranges of matrix rows.
 
   Syntax
 
     pr = minmax(p)
 
   Description
 
     MINMAX(P) takes one argument,
       P - RxQ matrix.
     and returns the Rx2 matrix PR of minimum and maximum values
     for each row of P.
 
     Alternately, P can be an MxN cell array of matrices.  Each matrix
     P{i,j} should Ri rows and Q columns.  In this case, MINMAX returns
     an Mx1 cell array where the mth matrix is an Rix2 matrix of the
     minimum and maximum values of elements for the matrics on the
     ith row of P.
 
   Examples
 
     p = [0 1 2; -1 -2 -0.5]
     pr = minmax(p)
 
     p = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};
     pr = minmax(p)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:18

Size:

1034 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>midpoint.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>nnguitools.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mse.m

(back to table of contents)
 MSE Mean squared error performance function.
 
   Syntax
 
     perf = mse(E,Y,X,FP)
     dPerf_dy = mse('dy',E,Y,X,perf,FP);
     dPerf_dx = mse('dx',E,Y,X,perf,FP);
     info = mse(code)
 
   Description
 
     MSE is a network performance function.  It measures the
     network's performance according to the mean of squared errors.
   
     MSE(E,Y,X,PP) takes E and optional function parameters,
       E - Matrix or cell array of error vectors.
       Y - Matrix or cell array of output vectors. (ignored).
       X  - Vector of all weight and bias values (ignored).
       FP - Function parameters (ignored).
      and returns the mean squared error.
 
     MSE('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     MSE('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
 
     MSE('name') returns the name of this function.
     MSE('pnames') returns the name of this function.
     MSE('pdefaults') returns the default function parameters.
   
   Examples
 
     Here a two layer feed-forward network is created with a 1-element
     input ranging from -10 to 10, four hidden TANSIG neurons, and one
     PURELIN output neuron.
 
       net = newff([-10 10],[4 1],{'tansig','purelin'});
 
     Here the network is given a batch of inputs P.  The error
     is calculated by subtracting the output A from target T.
     Then the mean squared error is calculated.
 
       p = [-10 -5 0 5 10];
       t = [0 0 1 1 1];
       y = sim(net,p)
       e = t-y
       perf = mse(e)
 
     Note that MSE can be called with only one argument because the
     other arguments are ignored.  MSE supports those ignored arguments
     to conform to the standard performance function argument list.
 
   Network Use
 
     You can create a standard network that uses MSE with NEWFF,
     NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with MSE set
     NET.performFcn to 'mse'.  This will automatically set
     NET.performParam to the empty matrix [], as MSE has no
     performance parameters.
 
     In either case, calling TRAIN or ADAPT will result
     in MSE being used to calculate performance.
 
     See NEWFF or NEWCF for examples.
 
   See also MSEREG, MAE, DMSE

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:20

Size:

3657 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>msereg.m

(back to table of contents)
 MSEREG Mean squared error with regularization performance function.
 
   Syntax
 
     perf = msereg(E,Y,X,FP)
     dPerf_dy = msereg('dy',E,Y,X,perf,FP);
     dPerf_dx = msereg('dx',E,Y,X,perf,FP);
     info = msereg(code)
 
   Description
 
     MSEREG is a network performance function.  It measures
     network performance as the weight sum of two factors:
     the mean squared error and the mean squared weights and biases.
   
     MSEREG(E,Y,X,PP) takes E and optional function parameters,
       E - Matrix or cell array of error vectors.
       Y - Matrix or cell array of output vectors. (ignored).
       X  - Vector of all weight and bias values.
       FP.ratio - Ratio of importance between errors and weights.
     and returns the mean squared error, plus FP.reg times the mean
     squared weights.
 
     MSEREG('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     MSEREG('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
 
     MSEREG('name') returns the name of this function.
     MSEREG('pnames') returns the name of this function.
     MSEREG('pdefaults') returns the default function parameters.
   
   Examples
 
     Here a two layer feed-forward is created with a 1-element input
     ranging from -2 to 2, four hidden TANSIG neurons, and one
     PURELIN output neuron.
 
   net = newff([-2 2],[4 1],{'tansig','purelin'},'trainlm','learngdm','msereg');
 
     Here the network is given a batch of inputs P.  The error is
     calculated by subtracting the output A from target T. Then the
     mean squared error is calculated using a ratio of 20/(20+1).
     (Errors are 20 times as important as weight and bias values).
 
       p = [-2 -1 0 1 2];
       t = [0 1 1 1 0];
       y = sim(net,p)
       e = t-y
       net.performParam.ratio = 20/(20+1);
       perf = msereg(e,net)
 
   Network Use
 
     You can create a standard network that uses MSEREG with NEWFF,
     NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with MSEREG, set
     NET.performFcn to 'msereg'.  This will automatically set
     NET.performParam to MSEREG's default performance parameters.
 
     In either case, calling TRAIN or ADAPT will result
     in MSEREG being used to calculate performance.
 
     See NEWFF or NEWCF for examples.
 
   See also MSE, MAE, DMSEREG.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:20

Size:

4160 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>mseregec.m

(back to table of contents)
 MSEREGEC Mean squared error with regularization and economization performance function.
 
   Syntax
 
     perf = mseregec(E,Y,X,FP)
     dPerf_dy = mseregec('dy',E,Y,X,perf,FP);
     dPerf_dx = mseregec('dx',E,Y,X,perf,FP);
     info = mseregec(code)
 
   Description
 
     MSEREGEC is a network performance function.  It measures
     network performance as the weighted sum of three factors:
     the mean squared error, the mean squared weights and biases,
     and the mean squared output.
   
     MSEREGEC(E,Y,X,PP) takes from these arguments,
       E - SxQ error matrix or NxTS cell array of such matrices.
       Y - SxQ error matrix or NxTS cell array of such matrices.
       X - Vector of weight and bias values.
       FP.reg - Importance of minimizing weights relative to errors.
       FP.econ - Importance of minimizing outputs relative to errors.
     and returns the mean squared error, plus FP.reg times the mean
     squared weights, plus FP.econ times the mean squared output.
 
     MSEREGEC('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     MSEREGEC('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
 
     MSEREGEC('name') returns the name of this function.
     MSEREGEC('pnames') returns the name of this function.
     MSEREGEC('pdefaults') returns the default function parameters.
   
   Examples
 
     Here a two layer feed-forward is created with a 1-element input
     ranging from -2 to 2, four hidden TANSIG neurons, and one
     PURELIN output neuron.
 
   net = newff([-2 2],[4 1],{'tansig','purelin'},'trainlm','learngdm','msereg');
 
     Here the network is given a batch of inputs P.  The error is
     calculated by subtracting the output A from target T. Then the
     mean squared error is calculated using a ratio of 20/(20+1).
     (Errors are 20 times as important as weight and bias values).
 
       p = [-2 -1 0 1 2];
       t = [0 1 1 1 0];
       y = sim(net,p)
       e = t-y
       net.performParam.ratio = 20/(20+1);
       perf = msereg(e,net)
 
   Network Use
 
     You can create a standard network that uses MSEREG with NEWFF,
     NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with MSEREG, set
     NET.performFcn to 'msereg'.  This will automatically set
     NET.performParam to MSEREG's default performance parameters.
 
     In either case, calling TRAIN or ADAPT will result
     in MSEREG being used to calculate performance.
 
     See NEWFF or NEWCF for examples.
 
   See also MSE, MAE, DMSEREG.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:22

Size:

4498 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>negdist.m

(back to table of contents)
 NEGDIST Negative distance weight function.
 
 	Syntax
 
 	  Z = negdist(W,P,FP)
 	  info = negdist(code)
      dim = normprod('size',S,R,FP)
      dp = normprod('dp',W,P,Z,FP)
      dw = normprod('dw',W,P,Z,FP)
 
 	Description
 
 	  NEGDIST is a weight function.  Weight functions apply
 	  weights to an input to get weighted inputs.
 
 	  NEGDIST(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ matrix of negative vector distances.
 
 	  NEGDIST(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
        'fullderiv'  - Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 
    NORMPROD('size',S,R,FP) takes the layer dimension S, input dimention R,
    and function parameters, and returns the weight size [SxR].
 
    NORMPROD('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
    NORMPROD('size',S,R,FP) returns the derivative of Z with respect to W.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,3);
 	    P = rand(3,1);
 	    Z = negdist(W,P)
 
 	Network Use
 
 	  You can create a standard network that uses NEGDIST
 	  by calling NEWC or NEWSOM.
 
 	  To change a network so an input weight uses NEGDIST, set
 	  NET.inputWeight{i,j}.weightFcn to 'negdist'.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'negdist'.
 
 	  In either case, call SIM to simulate the network with NEGDIST.
 	  See NEWC or NEWSOM for simulation examples.
 
 	Algorithm
 
 	  NEGDIST returns the negative Euclidean distance:
 
 	    z = -sqrt(sum(w-p)^2)
 
 	See also SIM, DOTPROD, DIST

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:24

Size:

4302 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>netinv.m

(back to table of contents)
 NETINV Inverse transfer function.
   
   Syntax
 
     A = netinv(N,FP)
     dA_dN = netinv('dn',N,A,FP)
     info = netinv(code)
 
   Description
   
     NETINV is a transfer function.  Transfer functions
     calculate a layer's output from its net input.
   
     NETINV(N,FP) takes inputs,
      N - SxQ matrix of net input (column) vectors.
      FP - Struct of function parameters (ignored).
     and returns 1/N.
   
     NETINV('dn',N,A,FP) returns derivative of A w-respect to N.
     If A or FP are not supplied or are set to [], FP reverts to
     the default parameters, and A is calculated from N.
 
     NETINV('name') returns the name of this function.
     NETINV('output',FP) returns the [min max] output range.
     NETINV('active',FP) returns the [min max] active input range.
     NETINV('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
     NETINV('fpnames') returns the names of the function parameters.
     NETINV('fpdefaults') returns the default function parameters.
 
  Examples
 
    Here we define 10 5-element net input vectors N, and calculate A.
 
      n = rand(5,10);
      a = netinv(n);
 
    Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'netinv';
 
  See also TANSIG, LOGSIG

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:10

Size:

2662 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>netprod.m

(back to table of contents)
 NETPROD Product net input function.
 
 	Syntax
 
 	  N = netprod({Z1,Z2,...,Zn},FP)
    dN_dZj = netprod('dz',j,Z,N,FP)
 	  INFO = netprod(CODE)
 
 	Description
 
 	  NETPROD is a net input function.  Net input functions
 	  calculate a layer's net input by combining its weighted
 	  inputs and biases.
 
 	  NETPROD({Z1,Z2,...,Zn},FP) takes these arguments,
 	    Zi - SxQ matrices in a row cell array.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  Returns element-wise product of Z1 to Zn.
 
 	  NETPROD(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
      'fullderiv'  - Full NxSxQ derivative = 1, Element-wise SxQ derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 	Examples
 
 	  Here NETPROD combines two sets of weighted input
 	  vectors (which we have defined ourselves).
 
 	    z1 = [1 2 4;3 4 1];
 	    z2 = [-1 2 2; -5 -6 1];
      z = {z1,z2};
 	    n = netprod({z})
 
 	  Here NETPROD combines the same weighted inputs with
 	  a bias vector.  Because Z1 and Z2 each contain three
 	  concurrent vectors, three concurrent copies of B must
 	  be created with CONCUR so that all sizes match up.
 
 	    b = [0; -1];
      z = {z1, z2, concur(b,3)};
 	    n = netprod(z)
 
 	Network Use
 
 	  You can create a standard network that uses NETPROD
 	  by calling NEWPNN or NEWGRNN.
 
 	  To change a network so that a layer uses NETPROD, set
 	  NET.layers{i}.netInputFcn to 'netprod'.
 
 	  In either case, call SIM to simulate the network with NETPROD.
 	  See NEWPNN or NEWGRNN for simulation examples.
 
 	See also NETWORK/SIM, DNETPROD, NETSUM, CONCUR

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:48

Size:

2841 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_net.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>netsum.m

(back to table of contents)
 NETSUM Sum net input function.
 
 	Syntax
 
 	  N = netsum({Z1,Z2,...,Zn},FP)
    dN_dZj = netsum('dz',j,Z,N,FP)
 	  INFO = netsum(CODE)
 
 	Description
 
 	  NETSUM is a net input function.  Net input functions calculate
 	  a layer's net input by combining its weighted inputs and bias.
 
 	  NETSUM({Z1,Z2,...,Zn},FP) takes Z1-Zn and optional function parameters,
 	    Zi - SxQ matrices in a row cell array.
 	    FP - Row cell array of function parameters (ignored).
 	  Returns element-wise sum of Z1 to Zn.
 
    NETSUM('dz',j,{Z1,...,Zn},N,FP) returns the derivative of N with
    respect to Zj.  If FP is not supplied the default values are used.
    if N is not supplied, or is [], it is calculated for you.
 
 	  NETSUM('name') returns the name of this function.
 	  NETSUM('type') returns the type of this function.
    NETSUM('fpnames') returns the names of the function paramters.
    NETSUM('fpdefaults') returns default function paramter values.
    NETSUM('fpcheck',FP) throws an error for illegal function parameters.
 	  NETSUM('fullderiv') returns 0 or 1, if the derivate is SxQ or NxSxQ.
 
 	Examples
 
 	  Here NETSUM combines two sets of weighted input vectors and a bias.
    We must use CONCUR to make B the same dimensions as Z1 and Z2. 
 
 	    z1 = [1 2 4; 3 4 1]
 	    z2 = [-1 2 2; -5 -6 1]
 	    b = [0; -1]
 	    n = netsum({z1,z2,concur(b,3)})
 
 	  Here we assign this net input function to layer i of a network.
 
      net.layers{i}.netFcn = 'compet';
 
    Use NEWP or NEWLIN to create a standard network that uses NETSUM.
 
 	See also NETPROD, NETINV, NETNORMALIZED

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:50

Size:

2526 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_net.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newc.m

(back to table of contents)
 NEWC Create a competitive layer.
 
   Syntax
 
    net = newc(PR,S,KLR,CLR)
 
   Description
 
     Competitive layers are used to solve classification
     problems.
 
     NET = NEWC(PR,S,KLR,CLR) takes these inputs,
       PR - Rx2 matrix of min and max values for R input elements.
       S  - Number of neurons.
       KLR - Kohonen learning rate, default = 0.01.
       CLR - Conscience learning rate, default = 0.001.
     Returns a new competitive layer.
 
   Examples
 
     Here is a set of four two-element vectors P.
 
       P = [.1 .8  .1 .9; .2 .9 .1 .8];
 
     To competitive layer can be used to divide these inputs
     into two classes.  First a two neuron layer is created
     with two input elements ranging from 0 to 1, then it
     is trained.
 
       net = newc([0 1; 0 1],2);
       net = train(net,P);
 
     The resulting network can then be simulated and its
     output vectors converted to class indices.
 
       Y = sim(net,P)
       Yc = vec2ind(Y)
 
   Properties
 
     Competitive layers consist of a single layer with the NEGDIST
     weight function, NETSUM net input function, and the COMPET
     transfer function.
 
     The layer has a weight from the input, and a bias.
 
     Weights and biases are initialized with MIDPOINT and INITCON.
 
     Adaption and training are done with TRAINS and TRAINR,
     which both update weight and bias values with the LEARNK
     and LEARNCON learning functions.
 
   See also SIM, INIT, ADAPT, TRAIN, TRAINS, TRAINR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:50

Size:

3328 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2c.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newcf.m

(back to table of contents)
 NEWCF Create a cascade-forward backpropagation network.
 
   Syntax
 
    net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWCF(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PR  - Rx2 matrix of min and max values for R input elements.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer cascade-forward backprop network.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       P = [0 1 2 3 4 5 6 7 8 9 10];
       T = [0 1 2 3 4 3 2 1 2 3 4];
 
     Here a two-layer cascade-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has five TANSIG
     neurons, the second layer has one PURELIN neuron.  The TRAINLM
     network training function is to be used.
 
       net = newcf([0 10],[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated and its output plotted against
     the targets.
 
       Y = sim(net,P);
        plot(P,T,P,Y,'o')
 
     Here the network is trained for 50 epochs.  Again the network's
      output is plotted.
 
       net.trainParam.epochs = 50;
       net = train(net,P,T);
       Y = sim(net,P);
        plot(P,T,P,Y,'o')
 
   Algorithm
 
     Cascade-forward networks consists of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has weights coming from the input and all previous layers.
     All layers have biases.  The last layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWFF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:52

Size:

5309 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newdtdnn.m

(back to table of contents)
 NEWDTDNN Create a distributed time delay neural network.
 
   Syntax
 
     net = newdtdnn(PR,[D1 D2...DN1],[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWDTDNN(PR,[D1 D2...DN1],[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PR  - Rx2 matrix of min and max values for R input elements.
       Di  - Delay vector for the ith layer.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer distributed time delay neural network.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of an input sequence P and target
     sequence T that can be solved by a network with one delay.
 
       P = {1  0 0 1 1  0 1  0 0 0 0 1 1  0 0 1};
       T = {1 -1 0 1 0 -1 1 -1 0 0 0 1 0 -1 0 1};
 
     Here a two-layer feed-forward network is created with input
     delays of 0 and 1.  The network's input ranges from [0 to 1].
     The first layer has five TANSIG neurons, the second layer has one
     PURELIN neuron.  The TRAINLM network training function is to be used.
 
       net = newdtdnn(minmax(P),{[0 1] [0 1]},[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated.
 
       Y = sim(net,P)
 
     Here the network is trained for 50 epochs.  Again the network's
      output is calculated.
 
       net.trainParam.epochs = 50;
       net = train(net,P,T);
       Y = sim(net,P)
 
   Algorithm
 
     Feed-forward networks consists of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input with the
     specified input delays.  Each subsequent layer has a weight coming
     from the previous layer and specified layer delays.  All layers have
     biases.  The last layer is the network output.
     
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:17:02

Size:

6133 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newelm.m

(back to table of contents)
 NEWELM Create an Elman backpropagation network.
 
   Syntax
 
     net = newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
     
      NET = NEWELM(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes several arguments,
       PR  - Rx2 matrix of min and max values for R input elements.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'traingdx'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an Elman network.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINGD, TRAINGDM, TRAINGDA, TRAINGDX, etc.
 
     *WARNING*: Algorithms which take large step sizes, such as TRAINLM,
     and TRAINRP, etc., are not recommended for Elman networks.  Because
     of the delays in Elman networks the gradient of performance used
     by these algorithms is only approximated making learning difficult
     for large step algorithms.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a series of Boolean inputs P, and another sequence T
     which is 1 wherever P has had two 1's in a row.
 
       P = round(rand(1,20));
       T = [0 (P(1:end-1)+P(2:end) == 2)];
 
     We would like the network to recognize whenever two 1's
     occur in a row.  First we arrange these values as sequences.
 
       Pseq = con2seq(P);
       Tseq = con2seq(T);
 
     Next we create an Elman network whose input varies from 0 to 1,
     and has five hidden neurons and 1 output.
 
       net = newelm([0 1],[10 1],{'tansig','logsig'});
 
     Then we train the network with a mean squared error goal of
     0.1, and simulate it.
 
       net = train(net,Pseq,Tseq);
       Y = sim(net,Pseq)
 
   Algorithm
 
     Elman networks consists of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has a weight coming from the previous layer.  All layers except
     the last have a recurrent weight. All layers have biases.  The last
     layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWFF, NEWCF, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:52

Size:

4959 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2elm.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newff.m

(back to table of contents)
 NEWFF Create a feed-forward backpropagation network.
 
   Syntax
 
     net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWFF(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PR  - Rx2 matrix of min and max values for R input elements.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer feed-forward backprop network.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       P = [0 1 2 3 4 5 6 7 8 9 10];
       T = [0 1 2 3 4 3 2 1 2 3 4];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has five TANSIG
     neurons, the second layer has one PURELIN neuron.  The TRAINLM
     network training function is to be used.
 
       net = newff(minmax(P),[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated and its output plotted against
     the targets.
 
       Y = sim(net,P);
        plot(P,T,P,Y,'o')
 
     Here the network is trained for 50 epochs.  Again the network's
      output is plotted.
 
       net.trainParam.epochs = 50;
       net = train(net,P,T);
       Y = sim(net,P);
        plot(P,T,P,Y,'o')
 
   Algorithm
 
     Feed-forward networks consist of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has a weight coming from the previous layer.  All layers
     have biases.  The last layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:54

Size:

5371 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newnarx.m
ApplicationRoot>WavixIV>neural501>newnarxsp.m
ApplicationRoot>WavixIV>neural501>nnt2ff.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newfftd.m

(back to table of contents)
 NEWFFTD Create a feed-forward input-delay backprop network.
 
   Syntax
 
     net = newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWFFTD(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PR  - Rx2 matrix of min and max values for R input elements.
       ID  - Input delay vector.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer feed-forward backprop network.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of an input sequence P and target
     sequence T that can be solved by a network with one delay.
 
       P = {1  0 0 1 1  0 1  0 0 0 0 1 1  0 0 1};
       T = {1 -1 0 1 0 -1 1 -1 0 0 0 1 0 -1 0 1};
 
     Here a two-layer feed-forward network is created with input
     delays of 0 and 1.  The network's input ranges from [0 to 1].
     The first layer has five TANSIG neurons, the second layer has one
     PURELIN neuron.  The TRAINLM network training function is to be used.
 
       net = newfftd([0 1],[0 1],[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated.
 
       Y = sim(net,P)
 
     Here the network is trained for 50 epochs.  Again the network's
      output is calculated.
 
       net.trainParam.epochs = 50;
       net = train(net,P,T);
       Y = sim(net,P)
 
   Algorithm
 
     Feed-forward networks consists of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input with the
     specified input delays.  Each subsequent layer has a weight coming
     from the previous layer.  All layers have biases.  The last layer
     is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:54

Size:

5597 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newgrnn.m

(back to table of contents)
 NEWGRNN Design a generalized regression neural network.
 
   Synopsis
 
     net = newgrnn(P,T,SPREAD)
 
   Description
 
     Generalized regression neural networks are a kind
     of radial basis network that is often used for function
     approximation.  GRNNs can be designed very quickly.
 
     NEWGRNN(P,T,SPREAD) takes these inputs,
       P      - RxQ matrix of Q input vectors.
       T      - SxQ matrix of Q target class vectors.
       SPREAD - Spread of radial basis functions, default = 1.0.
     and returns a new generalized regression neural network.
 
     The larger SPREAD is, the smoother the function approximation
     will be.  To fit data closely, use a SPREAD smaller than the
     typical distance between input vectors.  To fit the data more
     smoothly use a larger SPREAD.
 
   Examples
 
     Here we design a radial basis network given inputs P
     and targets T.
 
       P = [1 2 3];
       T = [2.0 4.1 5.9];
       net = newgrnn(P,T);
 
     Here the network is simulated for a new input.
 
       P = 1.5;
       Y = sim(net,P)
 
   Properties
 
     NEWGRNN creates a two layer network. The first layer has
     has RADBAS neurons, calculates weighted inputs with DIST and
     net input with NETPROD.  The second layer has PURELIN neurons,
     calculates weighted input with NORMPROD and net inputs with NETSUM.
     Only the first layer has biases.
 
     NEWGRNN sets the first layer weights to P', and the first
     layer biases are all set to 0.8326/SPREAD, resulting in
     radial basis functions that cross 0.5 at weighted inputs
     of +/- SPREAD. The second layer weights W2 are set to T.
 
   References:
 
     P.D. Wasserman, Advanced Methods in Neural Computing, New York:
       Van Nostrand Reinhold, pp. 155-61, 1993.
 
   See also SIM, NEWRB, NEWGRNN, NEWPNN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:56

Size:

3130 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newhop.m

(back to table of contents)
 NEWHOP Create a Hopfield recurrent network.
 
   Syntax
 
     net = newhop(T)
 
   Description
 
     Hopfield networks are used for pattern recall.
 
     NEWHOP(T) takes one input argument,
       T - RxQ matrix of Q target vectors. (Values must be +1 or -1.)
     and returns a new Hopfield recurrent neural network with
     stable points at the vectors in T.
 
   Examples
 
     Here we create a Hopfield network with two three-element
     stable points T.
 
       T = [-1 -1 1; 1 -1 1]';
       net = newhop(T);
 
     Below we check that the network is stable at these points by
     using them as initial layer delay conditions.  If the network is
     stable we would expect that the outputs Y will be the same.
     (Since Hopfield networks have no inputs, the second argument
     to SIM is Q = 2 when using matrix notation).
 
       Ai = T;
       [Y,Pf,Af] = sim(net,2,[],Ai);
       Y
 
     To see if the network can correct a corrupted vector, run
     the following code which simulates the Hopfield network for
     five timesteps.  (Since Hopfield networks have no inputs,
     the second argument to SIM is {Q TS} = [1 5] when using cell
     array notation.)
 
       Ai = {[-0.9; -0.8; 0.7]};
       [Y,Pf,Af] = sim(net,{1 5},{},Ai);
       Y{1}
 
     If you run the above code Y{1} will equal T(:,1) if the
     network has managed to convert the corrupted vector Ai to
     the nearest target vector.
 
   Algorithm
 
     Hopfield networks are designed to have stable layer outputs
     as defined by user supplied targets.  The algorithm
     minimizes the number of unwanted stable points.
 
   Properties
 
     Hopfield networks consist of a single layer with the DOTPROD
     weight function, NETSUM net input function, and the SATLINS
     transfer function.
 
     The layer has a recurrent weight from itself and a bias.
 
   Reference
 
     J. Li, A. N. Michel, W. Porod, "Analysis and synthesis of a
     class of neural networks: linear systems operating on a
     closed hypercube," IEEE Transactions on Circuits and Systems,
     vol. 36, no. 11, pp. 1405-1422, November 1989.
 
   See also SIM, SATLINS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

25-Jan-2006 19:49:20

Size:

3482 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newlin.m

(back to table of contents)
 NEWLIN Create a linear layer.
 
   Syntax
 
     net = newlin(PR,S,ID,LR)
 
   Description
 
     Linear layers are often used as adaptive filters
     for signal processing and prediction.
 
     NEWLIN(PR,S,ID,LR) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       S  - Number of elements in the output vector.
       ID - Input delay vector, default = [0].
       LR - Learning rate, default = 0.01;
     and returns a new linear layer.
 
     NET = NEWLIN(PR,S,0,P) takes an alternate argument,
       P  - Matrix of input vectors.
     and returns a linear layer with the maximum stable
     learning rate for learning with inputs P.
 
   Examples
 
     This code creates a single input (range of [-1 1] linear
     layer with one neuron, input delays of 0 and 1, and a learning
     rate of 0.01.  It is simulated for an input sequence P1.
 
       net = newlin([-1 1],1,[0 1],0.01);
       P1 = {0 -1 1 1 0 -1 1 0 0 1};
       Y = sim(net,P1)
 
     Here targets T1 are defined and the layer adapts to them.
     (Since this is the first call to ADAPT, the default input
     delay conditions are used.)
 
       T1 = {0 -1 0 2 1 -1 0 1 0 1};
       [net,Y,E,Pf] = adapt(net,P1,T1); Y
 
     Here the linear layer continues to adapt for a new sequence
     using the previous final conditions PF as initial conditions.
 
       P2 = {1 0 -1 -1 1 1 1 0 -1};
       T2 = {2 1 -1 -2 0 2 2 1 0};
       [net,Y,E,Pf] = adapt(net,P2,T2,Pf); Y
 
     Here we initialize the layer's weights and biases to new values.
 
       net = init(net);
 
     Here we train the newly initialized layer on the entire sequence
     for 200 epochs to an error goal of 0.1.
 
       P3 = [P1 P2];
       T3 = [T1 T2];
       net.trainParam.epochs = 200;
       net.trainParam.goal = 0.1;
       net = train(net,P3,T3);
       Y = sim(net,[P1 P2])
 
   Algorithm
 
     Linear layers consist of a single layer with the DOTPROD
     weight function, NETSUM net input function, and PURELIN
     transfer function.
 
     The layer has a weight from the input and a bias.
 
     Weights and biases are initialized with INITZERO.
 
     Adaption and training are done with TRAINS and TRAINB,
     which both update weight and bias values with LEARNWH.
     Performance is measured with MSE.
 
   See also NEWLIND, SIM, INIT, ADAPT, TRAIN, TRAINB, TRAINS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:58

Size:

4451 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>maxlinlr.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2lin.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newlind.m

(back to table of contents)
 NEWLIND Design a linear layer.
 
   Syntax
 
     net = newlind(P,T,Pi)
 
   Description
 
     NEWLIND(P,T,Pi) takes these input arguments,
       P  - RxQ matrix of Q input vectors.
       T  - SxQ matrix of Q target class vectors.
       Pi - 1xID cell array of initial input delay states,
            each element Pi{i,k} is an RixQ matrix, default = [].
     and returns a linear layer designed to output T
     (with minimum sum square error) given input P.
 
     NEWLIND(P,T,Pi) can also solve for linear networks with input delays and
     multiple inputs and layers by supplying input and target data in cell
     array form:
       P  - NixTS cell array, each element P{i,ts} is an RixQ input matrix.
       T  - NtxTS cell array, each element P{i,ts} is an VixQ matrix.
       Pi - NixID cell array, each element Pi{i,k} is an RixQ matrix, default = [].
     returns a linear network with ID input delays, Ni network inputs, Nl layers,
     and  designed to output T (with minimum sum square error) given input P.
 
   Examples
 
     We would like a linear layer that outputs T given P
     for the following definitions.
 
       P = [1 2 3];
       T = [2.0 4.1 5.9];
 
     Here we use NETLIND to design such a linear network that minimizes
     the sum squared error between its output Y and T.
 
       net = newlind(P,T);
       Y = sim(net,P)
 
     We would like another linear layer that outputs the sequence T
     given the sequence P and two initial input delay states Pi.
 
       P = {1 2 1 3 3 2};
       Pi = {1 3};
       T = {5.0 6.1 4.0 6.0 6.9 8.0};
       net = newlind(P,T,Pi);
       Y = sim(net,P,Pi)
 
     We would like a linear network with two outputs Y1 and Y2, that generate
     sequences T1 and T2, given the sequences P1 and P2 with 3 initial input
     delay states Pi1 for input 1, and 3 initial delays states Pi2 for input 2.
 
       P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
       P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
       T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
       T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
       net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
       Y = sim(net,[P1; P2],[Pi1; Pi2]);
       Y1 = Y(1,:)
       Y2 = Y(2,:)
 
   Algorithm
 
     NEWLIND calculates weight W and bias B values for a
     linear layer from inputs P and targets T by solving
     this linear equation in the least squares sense:
     
       [W b] * [P; ones] = T
 
   See also SIM, NEWLIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:58

Size:

6225 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>newnet.m
ApplicationRoot>WavixIV>neural501>seq2con.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newlrn.m

(back to table of contents)
 NEWLRN Create a Layered-Recurrent network.
 
   Syntax
 
     net = newlrn(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
     
      NET = NEWLRN(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes several arguments,
       PR  - Rx2 matrix of min and max values for R input elements.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'. %ODJ 5/14/02
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns a Layered-Recurrent network.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINSCG, TRAINBR, etc.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a series of Boolean inputs P, and another sequence T
     which is 1 wherever P has had two 1's in a row.
 
       P = round(rand(1,20));
       T = [0 (P(1:end-1)+P(2:end) == 2)];
 
     We would like the network to recognize whenever two 1's
     occur in a row.  First we arrange these values as sequences.
 
       Pseq = con2seq(P);
       Tseq = con2seq(T);
 
     Next we create a layered-recurrent network whose input varies from 0 to 1,
     and has five hidden neurons and 1 output.
 
       net = newlrn(minmax(P),[10 1],{'tansig','logsig'});
 
     Then we train the network with a mean squared error goal of
     0.1, and simulate it.
 
       net = train(net,Pseq,Tseq);
       Y = sim(net,Pseq)
 
   Algorithm
 
     Layered-Recurrent networks consists of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has a weight coming from the previous layer.  All layers except
     the last have a recurrent weight. All layers have biases.  The last
     layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWFF, NEWCF, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:17:10

Size:

4753 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newlvq.m

(back to table of contents)
 NEWLVQ Create a learning vector quantization network.
 
   Syntax
 
     net = newlvq(PR,S1,PC,LR,LF)
 
   Description
 
     LVQ networks are used to solve classification
     problems.
 
     NET = NEWLVQ(PR,S1,PC,LR,LF) takes these inputs,
       PR - Rx2 matrix of min and max values for R input elements.
       S1 - Number of hidden neurons.
       PC - S2 element vector of typical class percentages.
       LR - Learning rate, default = 0.01.
       LF - Learning function, default = 'learnlv1'.
     Returns a new LVQ network.
 
     The learning function LF can be LEARNLV1 or LEARNLV2.
     LEARNLV2 should only be used to finish training of networks
     already trained with LEARNLV1.
 
   Examples
 
     The input vectors P and target classes Tc below define
     a classification problem to be solved by an LVQ network.
 
       P = [-3 -2 -2  0  0  0  0 +2 +2 +3; ...
            0 +1 -1 +2 +1 -1 -2 +1 -1  0];
       Tc = [1 1 1 2 2 2 2 1 1 1];
 
     Target classes Tc are converted to target vectors T. Then an
     LVQ network is created (with inputs ranges obtained from P,
     4 hidden neurons, and class percentages of 0.6 and 0.4)
     and is trained.
 
       T = ind2vec(Tc);
       net = newlvq(minmax(P),4,[.6 .4]);
       net = train(net,P,T);
 
     The resulting network can be tested.
 
       Y = sim(net,P)
       Yc = vec2ind(Y)
 
   Properties
 
     NEWLVQ creates a two layer network. The first layer uses the
     COMPET transfer function, calculates weighted inputs with NEGDIST, and
     net input with NETSUM.  The second layer has PURELIN neurons,
     calculates weighted input with DOTPROD and net inputs with NETSUM.
     Neither layer has biases.
 
     First layer weights are initialized with MIDPOINT.  The
     second layer weights are set so that each output neuron i
     has unit weights coming to it from PC(i) percent of the
     hidden neurons.
 
     Adaption and training are done with TRAINS and TRAINR,
     which both update the first layer weights with the specified
     learning functions.
 
   See also SIM, INIT, ADAPT, TRAIN, TRAINS, TRAINR, LEARLV1, LEARNLV2.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:00

Size:

4075 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2lvq.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newnarx.m

(back to table of contents)
 NEWNARX Create a feed-forward backpropagation network with feedback from output to input.
 
   Syntax
 
     net = newnarx(PR,ID,OD,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWNARX(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PR  - Rx2 matrix of min and max values for R input elements.
       ID  - Input delay vector.
       OD  - Output delay vector.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer feed-forward backprop network with external feedback.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The d delays from output to input FBD must be integer values greater than
     zero placed in a row vector.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of sequences of inputs P and targets T
     that we would like to solve with a network.
 
       P = {[0] [1] [1] [0] [-1] [-1] [0] [1] [1] [0] [-1]};
       T = {[0] [1] [2] [2]  [1]  [0] [1] [2] [1] [0]  [1]};
 
     Here a two-layer feed-forward network with a two-delay input
     and two-delay feedback is created.  The network's input ranges 
     from [0 to 10].  The first layer has five TANSIG neurons, the
     second layer has one PURELIN neuron.  The TRAINLM network
     training function is to be used.
 
       net = newnarx(minmax(P),[0 1],[1 2],[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated and its output plotted against
     the targets.
 
        Y = sim(net,P);
        plot(1:11,[T{:}],1:11,[Y{:}],'o')
 
     Here the network is trained for 50 epochs.  Again the network's
      output is plotted.
 
       net = train(net,P,T);
       Yf = sim(net,P);
       plot(1:11,[T{:}],1:11,[Y{:}],'o',1:11,[Yf{:}],'+')
 
   Algorithm
 
     Feed-forward networks consist of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has a weight coming from the previous layer.  All layers
     have biases.  The last layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:17:12

Size:

4468 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newnarxsp.m

(back to table of contents)
 NEWNARXSP Create an NARX network in series-parallel arrangement.
 
   Syntax
 
     net = newnarxsp({PR1 PR2},PR,ID,OD,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
 
   Description
 
     NEWNARXSP({PR1 PR2},ID,OD,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
       PRi  - Rix2 matrix of min and max values for Ri input elements.
       ID  - Input delay vector.
       OD  - Output delay vector.
       Si  - Size of ith layer, for Nl layers.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'trainlm'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns an N layer feed-forward backprop network with external feedback.
 
     The transfer functions TFi can be any differentiable transfer
     function such as TANSIG, LOGSIG, or PURELIN.
 
     The d delays from output to input FBD must be integer values greater than
     zero placed in a row vector.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
 
     *WARNING*: TRAINLM is the default training function because it
     is very fast, but it requires a lot of memory to run.  If you get
     an "out-of-memory" error when training try doing one of these:
 
     (1) Slow TRAINLM training, but reduce memory requirements, by
         setting NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.)
     (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
     (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
   Examples
 
     Here is a problem consisting of sequences of inputs P and targets T
     that we would like to solve with a network.
 
       P = {[0] [1] [1] [0] [-1] [-1] [0] [1] [1] [0] [-1]};
       T = {[0] [1] [2] [2]  [1]  [0] [1] [2] [1] [0]  [1]};
       PT = [P;T];
 
     Here a two-layer feed-forward network with a two-delay input
     and two-delay feedback is created.  The network's input ranges 
     from [0 to 10].  The first layer has five TANSIG neurons, the
     second layer has one PURELIN neuron.  The TRAINLM network
     training function is to be used.
 
       net = newnarxsp(minmax(PT),[1 2],[1 2],[5 1],{'tansig' 'purelin'});
 
     Here the network is simulated and its output plotted against
     the targets.
 
        Y = sim(net,P);
        plot(1:11,[T{:}],1:11,[Y{:}],'o')
 
     Here the network is trained for 50 epochs.  Again the network's
      output is plotted.
 
       net = train(net,PT,T);
       Yf = sim(net,P);
       plot(1:11,[T{:}],1:11,[Y{:}],'o',1:11,[Yf{:}],'+')
 
   Algorithm
 
     Feed-forward networks consist of Nl layers using the DOTPROD
     weight function, NETSUM net input function, and the specified
     transfer functions.
 
     The first layer has weights coming from the input.  Each subsequent
     layer has a weight coming from the previous layer.  All layers
     have biases.  The last layer is the network output.
 
     Each layer's weights and biases are initialized with INITNW.
 
     Adaption is done with TRAINS which updates weights with the
     specified learning function. Training is done with the specified
     training function. Performance is measured according to the specified
     performance function.
 
   See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:17:14

Size:

4547 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newnet.m

(back to table of contents)
 NEWNET Notice regarding GUI.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:19:10

Size:

562 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newc.m
ApplicationRoot>WavixIV>neural501>newcf.m
ApplicationRoot>WavixIV>neural501>newdtdnn.m
ApplicationRoot>WavixIV>neural501>newelm.m
ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newfftd.m
ApplicationRoot>WavixIV>neural501>newgrnn.m
ApplicationRoot>WavixIV>neural501>newhop.m
ApplicationRoot>WavixIV>neural501>newlin.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>newlrn.m
ApplicationRoot>WavixIV>neural501>newlvq.m
ApplicationRoot>WavixIV>neural501>newnarx.m
ApplicationRoot>WavixIV>neural501>newnarxsp.m
ApplicationRoot>WavixIV>neural501>newpnn.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m
ApplicationRoot>WavixIV>neural501>newsom.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newp.m

(back to table of contents)
 NEWP Create a perceptron.
 
   Syntax
 
     net = newp(pr,s,tf,lf)
 
   Description
 
     Perceptrons are used to solve simple (i.e. linearly
     separable) classification problems.
 
     NET = NEWP(PR,S,TF,LF) takes these inputs,
       PR - Rx2 matrix of min and max values for R input elements.
       S  - Number of neurons.
       TF - Transfer function, default = 'hardlim'.
       LF - Learning function, default = 'learnp'.
     Returns a new perceptron.
 
     The transfer function TF can be HARDLIM or HARDLIMS.
     The learning function LF can be LEARNP or LEARNPN.
 
   Examples
 
     This code creates a perceptron layer with one 2-element
     input (ranges [0 1] and [-2 2]) and one neuron. (Supplying
     only two arguments to NEWP results in the default perceptron
     learning function LEARNP being used.)
 
       net = newp([0 1; -2 2],1);
 
     Now we define a problem, an OR gate, with a set of four
     2-element input vectors  P and the corresponding four
     1-element targets T.
 
       P = [0 0 1 1; 0 1 0 1];
       T = [0 1 1 1];
 
     Here we simulate the network's output, train for a
     maximum of 20 epochs, and then simulate it again.
 
       Y = sim(net,P)
       net.trainParam.epochs = 20;
       net = train(net,P,T);
       Y = sim(net,P)
 
   Notes
 
     Perceptrons can classify linearly separable classes in a
     finite amount of time. If input vectors have a large variance
     in their lengths, the LEARNPN can be faster than LEARNP.
 
   Properties
 
     Perceptrons consist of a single layer with the DOTPROD
     weight function, the NETSUM net input function, and the specified
     transfer function.
 
     The layer has a weight from the input and a bias.
 
     Weights and biases are initialized with INITZERO.
 
     Adaption and training are done with TRAINS and TRAINC,
     which both update weight and bias values with the specified
     learning function.  Performance is measured with MAE.
 
   See also SIM, INIT, ADAPT, TRAIN, HARDLIM, HARDLIMS, LEARNP, LEARNPN, TRAINB, TRAINS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:00

Size:

3450 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2p.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newpnn.m

(back to table of contents)
 NEWPNN Design a probabilistic neural network.
 
   Synopsis
 
     net = newpnn(P,T,SPREAD)
 
   Description
 
     Probabilistic neural networks are a kind of radial
     basis network suitable for classification problems.
 
     NET = NEWPNN(P,T,SPREAD) takes two or three arguments,
       P      - RxQ matrix of Q input vectors.
       T      - SxQ matrix of Q target class vectors.
       SPREAD - Spread of radial basis functions, default = 0.1.
     and returns a new probabilistic neural network.
 
     If SPREAD is near zero the network will act as a nearest
     neighbor classifier.  As SPREAD becomes larger the designed
     network will take into account several nearby design vectors.
 
   Examples
 
     Here a classification problem is defined with a set of
     inputs P and class indices Tc.
 
       P = [1 2 3 4 5 6 7];
       Tc = [1 2 3 2 2 3 1];
 
     Here the class indices are converted to target vectors,
     and a PNN is designed and tested.
 
       T = ind2vec(Tc)
       net = newpnn(P,T);
       Y = sim(net,P)
       Yc = vec2ind(Y)
 
   Algorithm
 
     NEWPNN creates a two layer network. The first layer has RADBAS
     neurons, and calculates its weighted inputs with DIST, and its net
     input with NETPROD.  The second layer has COMPET neurons, and
     calculates its weighted input with DOTPROD and its net inputs with
     NETSUM. Only the first layer has biases.
 
     NEWPNN sets the first layer weights to P', and the first
     layer biases are all set to 0.8326/SPREAD resulting in
     radial basis functions that cross 0.5 at weighted inputs
     of +/- SPREAD. The second layer weights W2 are set to T.
 
   References
 
     P.D. Wasserman, Advanced Methods in Neural Computing, New York:
        Van Nostrand Reinhold, pp. 35-55, 1993.
 
   See also SIM, IND2VEC, VEC2IND, NEWRB, NEWRBE, NEWGRNN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

25-Jan-2006 19:49:22

Size:

3184 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newrb.m

(back to table of contents)
 NEWRB Design a radial basis network.
 
   Synopsis
 
     [net,tr] = newrb(P,T,GOAL,SPREAD,MN,DF)
 
   Description
 
     Radial basis networks can be used to approximate
     functions.  NEWRB adds neurons to the hidden
     layer of a radial basis network until it meets
     the specified mean squared error goal.
 
    NEWRB(PR,T,GOAL,SPREAD,MN,DF) takes these arguments,
      P      - RxQ matrix of Q input vectors.
      T      - SxQ matrix of Q target class vectors.
      GOAL   - Mean squared error goal, default = 0.0.
      SPREAD - Spread of radial basis functions, default = 1.0.
      MN     - Maximum number of neurons, default is Q.
      DF     - Number of neurons to add between displays, default = 25.
    and returns a new radial basis network.
 
    The larger that SPREAD is the smoother the function approximation
    will be.  Too large a spread means a lot of neurons will be
    required to fit a fast changing function.  Too small a spread
    means many neurons will be required to fit a smooth function,
    and the network may not generalize well.  Call NEWRB with
    different spreads to find the best value for a given problem.
 
   Examples
 
     Here we design a radial basis network given inputs P
     and targets T.
 
       P = [1 2 3];
       T = [2.0 4.1 5.9];
       net = newrb(P,T);
 
     Here the network is simulated for a new input.
 
       P = 1.5;
       Y = sim(net,P)
 
   Algorithm
 
     NEWRB creates a two layer network. The first layer has RADBAS
     neurons, and calculates its weighted inputs with DIST, and
     its net input with NETPROD.  The second layer has PURELIN neurons,
     calculates its weighted input with DOTPROD and its net inputs with
     NETSUM. Both layers have biases.
 
     Initially the RADBAS layer has no neurons.  The following steps
     are repeated until the network's mean squared error falls below GOAL
    or the maximum number of neurons are reached:
     1) The network is simulated
     2) The input vector with the greatest error is found
     3) A RADBAS neuron is added with weights equal to that vector.
     4) The PURELIN layer weights are redesigned to minimize error.
 
   See also SIM, NEWRBE, NEWGRNN, NEWPNN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:02

Size:

6511 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>dist.m
ApplicationRoot>WavixIV>neural501>newnet.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>radbas.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newrbe.m

(back to table of contents)
 NEWRBE Design an exact radial basis network.
 
   Synopsis
 
     net = newrbe(P,T,SPREAD)
 
   Description
 
     Radial basis networks can be used to approximate functions.
     NEWRBE very quickly designs a radial basis network with
     zero error on the design vectors.
 
     NEWRBE(P,T,SPREAD) takes two or three arguments,
     P      - RxQ matrix of Q input vectors.
     T      - SxQ matrix of Q target class vectors.
     SPREAD - of radial basis functions, default = 1.0.
     and returns a new exact radial basis network.
 
     The larger that SPREAD, is the smoother the function approximation
     will be. Too large a spread can cause numerical problems.
 
   Examples
 
     Here we design a radial basis network, given inputs P
     and targets T.
 
       P = [1 2 3];
       T = [2.0 4.1 5.9];
       net = newrbe(P,T);
 
     Here the network is simulated for a new input.
 
       P = 1.5;
       Y = sim(net,P)
 
   Algorithm
 
     NEWRBE creates a two layer network. The first layer has RADBAS
     neurons, and calculates its weighted inputs with DIST, and its
     net input with NETPROD.  The second layer has PURELIN neurons,
     and calculates its weighted input with DOTPROD and its net inputs
     with NETSUM. Both layer's have biases.
 
     NEWRBE sets the first layer weights to P', and the first
     layer biases are all set to 0.8326/SPREAD, resulting in
     radial basis functions that cross 0.5 at weighted inputs
     of +/- SPREAD.
 
     The second layer weights IW{2,1} and biases b{2} are found by
     simulating the first layer outputs A{1}, and then solving the
     following linear expression:
 
         [W{2,1} b{2}] * [A{1}; ones] = T
 
   See also SIM, NEWRB, NEWGRNN, NEWPNN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:08

Size:

3374 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>dist.m
ApplicationRoot>WavixIV>neural501>newnet.m
ApplicationRoot>WavixIV>neural501>radbas.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newsom.m

(back to table of contents)
 NEWSOM Create a self-organizing map.
 
   Syntax
 
     net = newsom(PR,[d1,d2,...],tfcn,dfcn,olr,osteps,tlr,tns)
 
   Description
 
     Competitive layers are used to solve classification
     problems.
 
     NET = NEWSOM(PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TNS) takes,
       PR     - Rx2 matrix of min and max values for R input elements.
       Di     - Size of ith layer dimension, defaults = [5 8].
       TFCN   - Topology function, default = 'hextop'.
       DFCN   - Distance function, default = 'linkdist'.
       OLR    - Ordering phase learning rate, default = 0.9.
       OSTEPS - Ordering phase steps, default = 1000.
       TLR    - Tuning phase learning rate, default = 0.02;
       TND    - Tuning phase neighborhood distance, default = 1.
     and returns a new self-organizing map.
 
     The topology function TFCN can be HEXTOP, GRIDTOP, or RANDTOP.
     The distance function can be LINKDIST, DIST, or MANDIST.
 
   Examples
 
     The input vectors defined below are distributed over
     an 2-dimension input space varying over [0 2] and [0 1].
     This data will be used to train a SOM with dimensions [3 5].
 
       P = [rand(1,400)*2; rand(1,400)];
       net = newsom([0 2; 0 1],[3 5]);
       plotsom(net.layers{1}.positions)
 
     Here the SOM is trained for 25 epochs and the input vectors are
     plotted with the map which the SOM's weights has formed.
 
       net.trainParam.epochs = 25;
       net = train(net,P);
       plot(P(1,:),P(2,:),'.g','markersize',20)
       hold on
       plotsom(net.iw{1,1},net.layers{1}.distances)
       hold off
 
   Properties
 
     SOMs consist of a single layer with the NEGDIST weight function,
     NETSUM net input function, and the COMPET transfer function.
 
     The layer has a weight from the input, but no bias.
     The weight is initialized with MIDPOINT.
 
     Adaption and training are done with TRAINS and TRAINR,
     which both update the weight with LEARNSOM.
 
   See also SIM, INIT, ADAPT, TRAIN, TRAINS, TRAINR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:08

Size:

4497 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>newnet.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnt2som.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>newtr.m

(back to table of contents)
 NEWTR New training record with any number of optional fields.
 
   Syntax
 
     tr = newtr(epochs,'fieldname1','fieldname2',...)
     tr = newtr([firstEpoch epochs],'fieldname1','fieldname2',...)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:52

Size:

746 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nncell2string.m

(back to table of contents)
 ==========================================

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:28

Size:

740 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnguitools.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nncheckdata.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:28

Size:

877 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nncheckpt.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nncheckpt.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:30

Size:

997 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>nncheckdata.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>dividevec.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nncopy.m

(back to table of contents)
 NNCOPY Copy matrix or cell array.
 
   Syntax
 
      nncopy(x,m,n)
   
   Description
 
     NNCOPY(X,M,N) takes two arguments,
       X - RxC matrix (or cell array).
       M - Number of vertical copies.
       N - Number of horizontal copies.
     and returns a new (R*M)x(C*N) matrix (or cell array).
 
   Examples
 
      x1 = [1 2 3; 4 5 6];
      y1 = nncopy(x1,3,2)
      x2 = {[1 2]; [3; 4; 5]}
      y2 = nncopy(x2,2,3)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:18

Size:

677 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnetbhelp.m

(back to table of contents)
  NNETBHELP Neural Network Blockset on-line help function.
    Points Web browser to the HTML help file corresponding to this
    Neural Network Blockset block.  The current block is queried
    for its MaskType.
 
    Typical usage:
       set_param(gcb,'MaskHelp','web(nnetbhelp);');

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:02

Size:

1333 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnguitools.m

(back to table of contents)
 NNGUITOOLS A helper function for NNTOOL.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

27-Jun-2005 18:09:36

Size:

39744 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>nncell2string.m
ApplicationRoot>WavixIV>neural501>nnmat2string.m
ApplicationRoot>WavixIV>neural501>substring.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnisdata.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:32

Size:

807 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnmat2string.m

(back to table of contents)
  Copyright 1992-2005 The MathWorks, Inc.
  $Revision: 1.1.6.2 $  $Date: 2005/12/22 18:22:32 $

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:32

Size:

361 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnguitools.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnpackdata.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:34

Size:

185 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>dividevec.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2c.m

(back to table of contents)
 NNT2C Update NNT 2.0 competitive layer.
 
   Syntax
 
     net = nnt2c(pr,w,klr,clr)
 
   Description
 
     NNT2C(PR,W,KLR,CLR) takes these arguments,
       PR  - Rx2 matrix of min and max values for R input elements.
       W   - SxR weight matrix.
       KLR - Kohonen learning rate, default = 0.01.
       CLR - Conscience learning rate, default = 0.001.
     and returns a competitive layer.
 
     Once a network has been updated it can be simulated, initialized
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
     
   See also NEWC.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:10

Size:

1080 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>initcon.m
ApplicationRoot>WavixIV>neural501>newc.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2elm.m

(back to table of contents)
 NNT2ELM Update NNT 2.0 Elman backpropagation network.
 
   Syntax
 
     net = nnt2elm(pr,w1,b1,w2,b2,btf,blf,pf)
 
   Description
 
     NNT2ELM(PR,W1,B1,W2,B2,BTF,BLF,PF) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       W1 - S1x(R+S1) weight matrix.
       B1 - S1x1 bias vector.
       W2 - S2xS1 weight matrix.
       B2 - S2x1 bias vector.
       BTF - Backprop network training function, default = 'traingdx'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns a feed-forward network.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINGD, TRAINGDM, TRAINGDA, and TRAINGDX.
     Large step-size algorithms such as TRAINLM are not recommended
     for Elman networks.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
     Once a network has been updated it can be simulated,
     initialized, adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
 
   See also NEWELM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:10

Size:

2287 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newelm.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2ff.m

(back to table of contents)
 NNT2FF Update NNT 2.0 feed-forward network.
 
   Syntax
 
     net = nnt2ff(pr,{w1 w2 ...},{b1 b2 ...},{tf1 tf2 ...},btf,blr,pf)
 
   Description
 
     NNT2FF(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       Wi  - Weight matrix for the ith layer.
       Bi  - Bias vector for the ith layer.
       TFi - Transfer function of ith layer, default = 'tansig'.
       BTF - Backprop network training function, default = 'traingdx'.
       BLF - Backprop weight/bias learning function, default = 'learngdm'.
       PF  - Performance function, default = 'mse'.
     and returns a feed-forward network.
 
     The training function BTF can be any of the backprop training
     functions such as TRAINGD, TRAINGDM, TRAINGDA, TRAINGDX, or TRAINLM.
 
     The learning function BLF can be either of the backpropagation
     learning functions such as LEARNGD, or LEARNGDM.
 
     The performance function can be any of the differentiable performance
     functions such as MSE or MSEREG.
 
     Once a network has been updated it can be simulated,
     initialized, or trained with SIM, INIT, ADAPT, and TRAIN.
 
   See also NEWFF, NEWCF, NEWFFTD, NEWELM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:12

Size:

2155 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newff.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2hop.m

(back to table of contents)
 NNT2HOP Update NNT 2.0 Hopfield recurrent network.
 
   Syntax
 
     net = nnt2p(w,b)
 
   Description
 
     NNT2HOP(W,B) takes these arguments,
       W   - SxS weight matrix.
       B   - Sx1 bias vector
     and returns a perceptron.
 
     Once a network has been updated it can be simulated,
     initialized, adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
     
   See also NEWHOP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:12

Size:

928 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2lin.m

(back to table of contents)
 NNT2LIN Update NNT 2.0 linear layer.
 
   Syntax
 
     net = nnt2lin(pr,w,b,lr)
 
   Description
 
     NNT2LIN(PR,W,B) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       W  - SxR weight matrix.
       B  - Sx1 bias vector
       LR - Learning rate, default = 0.01;
     and returns a linear layer.
 
     Once a network has been updated it can be simulated, initialized,
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
 
   See also NEWLIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:14

Size:

1046 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newlin.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2lvq.m

(back to table of contents)
 NNT2LVQ Update NNT 2.0 learning vector quantization network.
 
   Syntax
 
     net = nnt2lvq(pr,w1,w2,lr,lf)
 
   Description
 
     NNT2LVQ(PR,W1,W2,LR,LF) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       W1 - S1xR weight matrix.
       W2 - S2xS1 weight matrix.
       LR - learning rate, default = 0.01.
       LF - Learning function, default = 'learnlv2'.
     and returns an LVQ network.
 
      The learning function LF can be LEARNLV1 or LEARNLV2.
 
     Once a network has been updated it can be simulated, initialized,
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
 
   See also NEWLVQ.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:14

Size:

1244 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newlvq.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2p.m

(back to table of contents)
 NNT2P Update NNT 2.0 perceptron.
 
   Syntax
 
     net = nnt2p(pr,w,b,tf,lf)
 
   Description
 
     NNT2P(PR,W,B,TF,LF) takes these arguments,
       PR  - Rx2 matrix of min and max values for R input elements.
       W   - SxR weight matrix.
       B   - Sx1 bias vector
       TF - Transfer function, default = 'hardlim'.
       LF - Learning function, default = 'learnp'.
     and returns a perceptron.
 
     The transfer function TF can be HARDLIM or HARDLIMS.
     The learning function LF can be LEARNP or LEARNPN.
 
     Once a network has been updated it can be simulated, initialized,
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
     
   See also NEWP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:16

Size:

1268 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newp.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2rb.m

(back to table of contents)
 NNT2RB Update NNT 2.0 radial basis network.
 
   Syntax
 
     net = nnt2rb(pr,w1,b1,w2,b2)
 
   Description
 
     NNT2RB(PR,W1,B1,W2,B2) takes these arguments,
       PR - Rx2 matrix of min and max values for R input elements.
       W1 - S1xR weight matrix.
       B1 - S1x1 bias vector.
       W2 - S2xS1 weight matrix.
       B2 - S2x1 bias vector.
     and returns a radial basis network.
 
     Once a network has been updated it can be simulated, initialized,
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
 
   See also NEWRB, NEWRBE, NEWGRNN, NEWPNN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:16

Size:

1568 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt2som.m

(back to table of contents)
 NNT2SOM Update NNT 2.0 self-organizing map.
 
   Syntax
 
     net = nnt2som(pr,[d1 d2 ...],w,olr,osteps,tlr,tnd)
 
   Description
 
     NNT2SOM(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TDN) takes these arguments,
       PR     - Rx2 matrix of min and max values for R input elements.
       Di     - Size of ith layer dimension.
       W      - SxR weight matrix.
       OLR    - Ordering phase learning rate, default = 0.9.
       OSTEPS - Ordering phase steps, default = 1000.
       TLR    - Tuning phase learning rate, default = 0.02;
       TND    - Tuning phase neighborhood distance, default = 1.
     Returns a self-organizing map.
 
     NNT2SOM assumes that the self-organizing map has a
     grid topology (GRIDTOP) using link distances (LINKDIST).
     This corresponds with the neighborhood function in NNT 2.0.
 
     The new network will only output 1 for the neuron with the greatest
     net input.  In NNT2 the network would also output 0.5 for that neuron's
     neighbors.
 
     Once a network has been updated it can be simulated, initialized,
     adapted, or trained with SIM, INIT, ADAPT, and TRAIN.
     
   See also NEWSOM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:18

Size:

1748 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>newsom.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnt_fpc2s.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:34

Size:

160 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>boiler_net.m
ApplicationRoot>WavixIV>neural501>boiler_transfer.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nntobsf.m

(back to table of contents)
 NNTOBSF Warn that a function is obsolete.
 
   nntobsf(fcnName,line1,line2,...)
   
   *WARNING*: This function is undocumented as it may be altered
   at any time in the future without warning.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:24

Size:

697 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nntobsu.m

(back to table of contents)
 NNTOBSU Warn that a function use is obsolete.
 
   nntobsu(fcnName,line1,line2,...)
   
   *WARNING*: This function is undocumented as it may be altered
   at any time in the future without warning.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:18

Size:

704 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>boiler_net.m
ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>boiler_transfer.m
ApplicationRoot>WavixIV>neural501>boiler_weight.m
ApplicationRoot>WavixIV>neural501>learnh.m
ApplicationRoot>WavixIV>neural501>learnhd.m
ApplicationRoot>WavixIV>neural501>learnis.m
ApplicationRoot>WavixIV>neural501>learnk.m
ApplicationRoot>WavixIV>neural501>learnos.m
ApplicationRoot>WavixIV>neural501>learnp.m
ApplicationRoot>WavixIV>neural501>learnpn.m
ApplicationRoot>WavixIV>neural501>learnwh.m
ApplicationRoot>WavixIV>neural501>midpoint.m
ApplicationRoot>WavixIV>neural501>trainlm.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nntwarn.m

(back to table of contents)
 NNTWARN
 
   Syntax
 
     nntwarn on
     nntwarn off
 
   Description
 
     NNTWARN allows Neural Network Toolbox warnings to be temporarily
     turned off.
 
     Code using obsolete Neural Network Toolbox functionality can
     generate a lot of warnings.  This function allows you to skip
     those warnings.  However, we encourage you to update your code
     to ensure that it will run under future versions of the toolbox.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:16

Size:

827 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nnunpackdata.m

(back to table of contents)
  Copyright 2005 The MathWorks, Inc.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:36

Size:

162 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>dividevec.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>normc.m

(back to table of contents)
 NORMC Normalize columns of a matrix.
 
   Syntax
 
     normc(M)
 
   Description
 
     NORMC(M) normalizes the columns of M to a length of 1.
 
   Examples
     
     m = [1 2; 3 4]
     n = normc(m)
 
   See also NORMR

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:20

Size:

552 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>randnc.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>normprod.m

(back to table of contents)
 NORMPROD Normalized dot product weight function.
 
 	Syntax
 
 	  Z = normprod(W,P,FP)
 	  info = normprod(code)
      dim = normprod('size',S,R,FP)
      dp = normprod('dp',W,P,Z,FP)
      dw = normprod('dw',W,P,Z,FP)
 
 	Description
 
 	  NORMPROD is a weight function.  Weight functions apply
 	  weights to an input to get weighted inputs.
 
 	  NORMPROD(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ matrix of normalized dot products.
 
 	  NORMPROD(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
        'pfullderiv' - Full input derivative = 1, linear input derivative = 0.
        'wfullderiv' - Full weight derivative = 1, linear weight derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
    NORMPROD('size',S,R,FP) takes the layer dimension S, input dimention R,
    and function parameters, and returns the weight size [SxR].
 
    NORMPROD('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
    NORMPROD('size',S,R,FP) returns the derivative of Z with respect to W.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(4,3);
 	    P = rand(3,1);
 	    Z = normprod(W,P)
 
 	Network Use
 
 	  You can create a standard network that uses NORMPROD
 	  by calling NEWGRNN.
 
 	  To change a network so an input weight uses NORMPROD, set
 	  NET.inputWeight{i,j}.weightFcn to 'normprod.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'normprod.
 
 	  In either case, call SIM to simulate the network with NORMPROD.
 	  See NEWGRNN for simulation examples.
 
 	Algorithm
 
 	  NORMPROD returns the dot product normalized by the sum
 	  of the input vector elements.
 
 	    z = w*p/sum(p)
 
 	See also DOTPROD.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:24

Size:

4262 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>normr.m

(back to table of contents)
 NORMR Normalize rows of a matrix.
 
   Syntax
 
     normr(M)
 
   Description
 
     NORMR(M) normalizes the columns of M to a length of 1.
 
   Examples
 
     m = [1 2; 3 4]
     n = normr(m)
 
   See also NORMC.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:20

Size:

550 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>randnr.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>nullpf.m

(back to table of contents)
 NULLPF Null performance function.
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:36

Size:

1245 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>pause2.m

(back to table of contents)
 PAUSE2 Pause procedure for specified time.
   
   PAUSE2(N)
     N - number of seconds (may be fractional).
   Stops procedure for N seconds.
   
   PAUSE2 differs from PAUSE in that pauses may take a fractional
     number of seconds. PAUSE(1.2) will halt a procedure for 1 second.
     PAUSE2(1.2) will halt a procedure for 1.2 seconds.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:17:22

Size:

613 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotbr.m

(back to table of contents)
 PLOTBR Plot network performance for Bayesian regularization training.
 
 	Syntax
 
 	  plotbr(tr,name,epoch)
 
 	Description
 
 	  PLOTBR(TR,NAME,EPOCH) takes these inputs,
 	    TR - Training record returned by train.
 	    NAME - Training function name, default = ''.
 	    EPOCH - Number of epochs, default = length of training record.
 	  and plots the training sum squared error, the sum squared weights
 	  and the effective number of parameters.
 
 	Example
 
 	  Here are input values P and associated targets T.
 
        p = [-1:.05:1];
        t = sin(2*pi*p)+0.1*randn(size(p));
 
 	  The code below creates a network and trains it on this problem.
 
        net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
 	    [net,tr] = train(net,p,t);
 
 	  During training PLOTBR was called to display the training
 	  record.  You can also call PLOTBR directly with the final
 	  training record TR, as shown below.
 
 	    plotbr(tr)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:26

Size:

7066 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>trainbr.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotep.m

(back to table of contents)
 PLOTEP Plot a weight-bias position on an error surface.
 
   Syntax
 
     h = plotep(w,b,e)
     h = plotep(w,b,e,h)
 
   Description
 
     PLOTEP is used to show network learning on a plot
       already created by PLOTES.
   
     PLOTEP(W,B,E) takes these arguments
       W - Current weight value.
       B - Current bias value.
       E - Current error.
     and returns a vector H containing information for
     continuing the plot.
   
     PLOTEP(W,B,E,H) continues plotting using the vector H,
     returned by the last call to PLOTEP.
   
     H contains handles to dots plotted on the error surface,
     so they can be deleted next time, as well as points on
     the error contour, so they can be connected.
   
   See also ERRSURF, PLOTES.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:28

Size:

1674 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotes.m

(back to table of contents)
 PLOTES Plot the error surface of a single input neuron.
 
   Syntax
 
     plotes(wv,bv,es,v)
 
   Description
   
     PLOTES(WV,BV,ES,V) takes these arguments,
       WV - 1xN row vector of values of W.
       BV - 1xM row vector of values of B.
       ES - MxN matrix of error vectors.
       V  - View, default = [-37.5, 30].
     and plots the error surface with a contour underneath.
   
     Calculate the error surface ES with ERRSURF.
 
   Examples
   
     p = [3 2];
     t = [0.4 0.8];
     wv = -4:0.4:4; bv = wv;
     ES = errsurf(p,t,wv,bv,'logsig');
     plotes(wv,bv,ES,[60 30])
            
   See also ERRSURF.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:28

Size:

2434 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotpc.m

(back to table of contents)
 PLOTPC Plot a classification line on a perceptron vector plot.
 
   Syntax
 
     plotpc(W,b)
     plotpc(W,b,h)
 
   Description
 
     PLOTPC(W,B) takes these inputs,
       W - SxR weight matrix (R must be 3 or less).
       B - Sx1 bias vector.
     and returns a handle to a plotted classification line.
   
     PLOTPC(W,B,H) takes these inputs,
       H - Handle to last plotted line.
     and deletes the last line before plotting the new one.
   
     This function does not change the current axis and is intended
     to be called after PLOTPV.
 
   Example
 
     The code below defines and plots the inputs and targets for a
     perceptron:
 
       p = [0 0 1 1; 0 1 0 1];
       t = [0 0 0 1];
       plotpv(p,t)
 
     The following code creates a perceptron with inputs ranging
     over the values in P, assigns values to its weights
     and biases, and plots the resulting classification line.
 
       net = newp(minmax(p),1);
       net.iw{1,1} = [-1.2 -0.5];
       net.b{1} = 1;
       plotpc(net.iw{1,1},net.b{1})
 
   See also PLOTPV.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:30

Size:

2698 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotpv.m

(back to table of contents)
 PLOTPV Plot perceptron input/target vectors.
 
   Syntax
 
     plotpv(p,t)
     plotpv(p,t,v)
 
   Description
   
     PLOTPV(P,T) take these inputs,
       P - RxQ matrix of input vectors (R must be 3 or less).
       T - SxQ matrix of binary target vectors (S must be 3 or less).
     and plots column vectors in P with markers based on T.
   
     PLOTPV(P,T,V) takes an additional input,
       V - Graph limits = [x_min x_max y_min y_max]
     and plots the column vectors with limits set by V.
 
   Example
 
     The code below defines and plots the inputs and targets
     for a perceptron:
 
       p = [0 0 1 1; 0 1 0 1];
       t = [0 0 0 1];
       plotpv(p,t)
 
     The following code creates a perceptron with inputs ranging
     over the values in P, assigns values to its weights
     and biases, and plots the resulting classification line.
 
       net = newp(minmax(p),1);
       net.iw{1,1} = [-1.2 -0.5];
       net.b{1} = 1;
       plotpc(net.iw{1,1},net.b{1})
 
   See also PLOTPC.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:32

Size:

2430 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotsom.m

(back to table of contents)
 PLOTSOM Plot self-organizing map.
 
   Syntax
 
     plotsom(pos)
     plotsom(W,d,nd)
 
   Description
 
     PLOTSOM(POS) takes one argument,
       POS - NxS matrix of S N-dimension neural positions.
     and plots the neuron positions with red dots, linking
     the neurons within a Euclidean distance of 1.
 
     PLOTSOM(W,D,ND) takes three arguments,
       W  - SxR weight matrix.
       D  - SxS distance matrix.
       ND - Neighborhood distance, default = 1.
     and plots the neuron's weight vectors with connections
     between weight vectors whose neurons are within a
     distance of 1.
 
   Examples
 
     Here are some neat plots of various layer topologies:
 
       pos = hextop(5,6); plotsom(pos)
       pos = gridtop(4,5); plotsom(pos)
       pos = randtop(18,12); plotsom(pos)
       pos = gridtop(4,5,2); plotsom(pos)
       pos = hextop(4,4,3); plotsom(pos)
 
     See NEWSOM for an example of plotting a layer's
     weight vectors with the input vectors they map.
 
   See also NEWSOM, LEARNSOM, INITSOM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:32

Size:

2301 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>dist.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotv.m

(back to table of contents)
 PLOTV Plot vectors as lines from the origin.
 
   Syntax
 
     plotv(m,t)
 
   Description
 
     PLOTV(M,T) takes two inputs,
       M - RxQ matrix of Q column vectors with R elements.
       T - (optional) the line plotting type, default = '-'.
     and plots the column vectors of M.
   
     R must be 2 or greater.  If R is greater than two,
     only the first two rows of M are used for the plot.
 
   Examples
 
     plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:34

Size:

863 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>plotvec.m

(back to table of contents)
 PLOTVEC Plot vectors with different colors.
 
   Syntax
 
     plotvec(x,c,m)
 
   Description
 
     PLOTVEC(X,C,M) takes these inputs,
       X - Matrix of (column) vectors.
       C - Row vector of color coordinate.
       M - Marker, default = '+'.
     and plots each ith vector in X with a marker M, using the
     ith value in C as the color coordinate.
   
     PLOTVEC(X) only takes a matrix X and plots each ith
     vector in X with marker '+' using the index i as the
     color coordinate.
   
   Examples
 
     x = [0 1 0.5 0.7; -1 2 0.5 0.1];
     c = [1 2 3 4];
     plotvec(x,c)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:34

Size:

1618 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>pnormc.m

(back to table of contents)
 PNORMC Pseudo-normalize columns of a matrix.
 
   Syntax
 
     pnormc(x,r)
 
   Description
   
     PNORMC(M,R) takes these arguments,
       X - MxN matrix.
       R - (optional) radius to normalize columns to, default = 1.
     returns X with an additional row of elements which results
       in new column vector lengths of R.
   
     WARNING: For this function to work properly, the columns of X must
       originally have vector lengths less than R.
 
   Examples
 
     x = [0.1 0.6; 0.3 0.1];
     y = pnormc(x)
   
   See also NORMC, NORMR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:22

Size:

923 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>poslin.m

(back to table of contents)
 POSLIN Positive linear transfer function.
 	
 	Syntax
 
 	  A = poslin(N,FP)
 	  dA_dN = poslin('dn',N,A,FP)
 	  INFO = poslin(CODE)
 
 	Description
 	
 	  POSLIN is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  POSLIN(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ matrix of N's elements clipped to [0, inf].
 	
 	  POSLIN('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
 	  If A or FP are not supplied or are set to [], FP reverts to
 	  the default parameters, and A is calculated from N.
 
 	  POSLIN('name') returns the name of this function.
 	  POSLIN('output',FP) returns the [min max] output range.
 	  POSLIN('active',FP) returns the [min max] active input range.
 	  POSLIN('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
 	  POSLIN('fpnames') returns the names of the function parameters.
 	  POSLIN('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here the code to create a plot of the POSLIN transfer function.
 	
 	    n = -5:0.1:5;
 	    a = poslin(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
 	    net.layers{i}.transferFcn = 'poslin';
 
 	Algorithm
 
 	    poslin(n) = n, if n >= 0
 	              = 0, if n <= 0
 
 	See also SIM, PURELIN, SATLIN, SATLINS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:12

Size:

2599 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>postreg.m

(back to table of contents)
 POSTREG Postprocesses the trained network response with a linear regression.
   
   Syntax
 
     [m,b,r] = postreg(A,T)
     [m,b,r] = postreg(A,T,X)
 
   Description
   
     POSTREG postprocesses the network training
     set by performing a linear regression between one element
      of the network response and the corresponding target.
   
     POSTREG(A,T) takes these inputs,
       A - 1xQ array of network outputs. One element of the network output.
        T - 1xQ array of targets. One element of the target vector.
     and returns and plots,
        M - Slope of the linear regression.
        B - Y intercept of the linear regression.
        R - Regression R-value.  R=1 means perfect correlation.
 
     POSTREG({Atrain,Avalidation,Atest},{Ttrain,Tvalidate,Ttest})
     returns and plots,
       M = {Mtrain,Mvalidation,Mtest}
       B = {Btrain,Bvalidation,Btest}
       R = {Rtrain,Rvalidation,Rtest}
     Training values are required. Validation and test values are optional.
 
     POSTREG(A,T,X)
       X - any value
     returns M, B, and R without creating a plot.
   
   Example
 
     In this example we normalize a set of training data with
      PRESTD, perform a principal component transformation on
      the normalized data, create and train a network using the pca
      data, simulate the network, unnormalize the output of the
      network using POSTSTD, and perform a linear regression between 
      the network outputs (unnormalized) and the targets to check the
      quality of the network training.
   
       p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
       t = [-0.08 3.4 -0.82 0.69 3.1];
       [pn,pp1] = mapstd(p);
       [tn,tp] = mapstd(t);
       [ptrans,pp2] = processpca(pn,0.02);
        net = newff(minmax(ptrans),[5 1],{'tansig' 'purelin'},'trainlm');
        net = train(net,ptrans,tn);
        an = sim(net,ptrans);
        a = mapstrd('reverse',an,tp);
        [m,b,r] = postreg(a,t);
 
   Algorithm
 
      Performs a linear regression between the network response
      and the target, and computes the correlation coefficient
      (R value) between the network response and the target.
 
   See also PREMNMX, PREPCA.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:36

Size:

4944 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>processpca.m

(back to table of contents)
 PROCESSPCA Processes rows of matrix with principal component analysis.
   
   Syntax
 
 	[y,ps] = processpca(maxfrac)
 	[y,ps] = processpca(x,fp)
 	y = processpca('apply',x,ps)
 	x = processpca('reverse',y,ps)
 	dx_dy = processpca('dx',x,y,ps)
 	dx_dy = processpca('dx',x,[],ps)
      name = processpca('name');
      fp = processpca('pdefaults');
      names = processpca('pnames');
      processpca('pcheck',fp);
 
   Description
   
    PROCESSPCA processes matrices using principal component analysis so
    that each row is uncorrelated, the rows are in the order of the amount
    they contribute to total variation, and rows whose contribution
    to total variation are less than MAXFRAC are removed.
   
 	  PROCESSPCA(X,MAXFRAC) takes X and an optional parameter,
 	  X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
      MAXFRAC - Maximum fraction of variance for removed rows. (Default 0)
 	  and returns,
      Y - Each NxQ matrix with N-M rows deleted (optional).
      PS - Process settings, to allow consistent processing of values.
 
    PROCESSPCA(X,FP) takes parameters as struct: FP.maxfrac.
    PROCESSPCA('apply',X,PS) returns Y, given X and settings PS.
    PROCESSPCA('reverse',Y,PS) returns X, given Y and settings PS.
    PROCESSPCA('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    PROCESSPCA('dx',X,[],PS)  returns the derivative, less efficiently.
    PROCESSPCA('name') returns the name of this process method.
    PROCESSPCA('pdefaults') returns default process parameter structure.
    PROCESSPCA('pdesc') returns the process parameter descriptions.
    PROCESSPCA('pcheck',fp) throws an error if any parameter is illegal.
     
    Here is how to format a matrix with an independent row, a correlated row,
    and a completely redundant row, so that its rows are uncorrelated and
    the redundant row is dropped.
 	
      x1_independant = rand(1,5)
      x1_correlated = rand(1,5) + x_independant;
      x1_redundant = x_independant + x_correlated
      x1 = [x1_independant; x1_correlated; x1_redundant]
      [y1,ps] = processpca(x1)
 
    Next, we apply the same processing settings to new values.
 
      x2_independant = rand(1,5)
      x2_correlated = rand(1,5) + x_independant;
      x2_redundant = x_independant + x_correlated
      x2 = [x2_independant; x2_correlated; x2_redundant];
      y2 = processpca('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = processpca('reverse',y1,ps)
 
   Algorithm
 
      Values in rows whose elements are not all the same are set to:
        y = 2*(x-minx)/(maxx-minx) - 1;
      Values in rows with all the same value are set to 0.
 
   See also MAPMINMAX, FIXUNKNOWNS, MAPSTD, REMOVECONSTANTROWS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

27-May-2006 13:14:30

Size:

5150 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>purelin.m

(back to table of contents)
 PURELIN Linear transfer function.
 	
 	Syntax
 
 	  A = purelin(N,FP)
    dA_dN = purelin('dn',N,A,FP)
 	  INFO = purelin(CODE)
 
 	Description
 	
 	  PURELIN is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  PURELIN(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, an SxQ matrix equal to N.
 	
    PURELIN('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    PURELIN('name') returns the name of this function.
    PURELIN('output',FP) returns the [min max] output range.
    PURELIN('active',FP) returns the [min max] active input range.
    PURELIN('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    PURELIN('fpnames') returns the names of the function parameters.
    PURELIN('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here is the code to create a plot of the PURELIN transfer function.
 	
 	    n = -5:0.1:5;
 	    a = purelin(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'purelin';
 
 	Algorithm
 
 	    a = purelin(n) = n
 
 	See also SIM, DPURELIN, SATLIN, SATLINS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:12

Size:

2615 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>quant.m

(back to table of contents)
 QUANT Discretize values as multiples of a quantity.
 
   Syntax
 
     quant(x,q)
 
   Description
 
     QUANT(X,Q) takes these inputs,
       X - Matrix, vector or scalar.
       Q - Minimum value.
     and returns values in X rounded to nearest multiple of Q
   
   Examples
 
     x = [1.333 4.756 -3.897];
     y = quant(x,0.1)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:22

Size:

520 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>radbas.m

(back to table of contents)
 RADBAS Radial basis transfer function.
 	
 	Syntax
 
 	  A = radbas(N,FP)
    dA_dN = radbas('dn',N,A,FP)
 	  INFO = radbas(CODE)
 
 	Description
 	
 	  RADBAS is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  RADBAS(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, an SxQ matrix of the radial basis function
    applied to each element of N.
 	
    RADBAS('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    RADBAS('name') returns the name of this function.
    RADBAS('output',FP) returns the [min max] output range.
    RADBAS('active',FP) returns the [min max] active input range.
    RADBAS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    RADBAS('fpnames') returns the names of the function parameters.
    RADBAS('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here we create a plot of the RADBAS transfer function.
 	
 	    n = -5:0.1:5;
 	    a = radbas(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'radbas';
 
 	Algorithm
 
 	    a = radbas(n) = exp(-n^2)
 
 	See also SIM, TRIBAS, DRADBAS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:14

Size:

2623 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>randnc.m

(back to table of contents)
 RANDNC Normalized column weight initialization function.
 
   Syntax
 
      W = randnc(S,PR)
      W = randnc(S,R)
 
   Description
 
     RANDNC is a weight initialization function.
 
     RANDNC(S,P) takes these inputs,
       S  - Number of rows (neurons).
       PR - Rx2 matrix of input value ranges = [Pmin Pmax].
     and returns an SxR random matrix with normalized columns.
   
     Can also be called as RANDNC(S,R).
   
   See also RANDNR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:32

Size:

771 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>normc.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>randnr.m

(back to table of contents)
 RANDNR Normalized row weight initialization function.
 
   Syntax
 
      W = randnr(S,PR)
      W = randnr(S,R)
 
   Description
 
     RANDNR is a weight initialization function.
 
     RANDNR(S,P) takes these inputs,
       S  - Number of rows (neurons).
       PR - Rx2 matrix of input value ranges = [Pmin Pmax].
     and returns an SxR random matrix with normalized rows.
   
     Can also be called as RANDNR(S,R).
   
   See also RANDNC.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:32

Size:

762 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>normr.m
ApplicationRoot>WavixIV>neural501>rands.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>initnw.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>rands.m

(back to table of contents)
 RANDS Symmetric random weight/bias initialization function.
 
   Syntax
 
     W = rands(S,PR)
     M = rands(S,R)
     v = rands(S);
 
   Description
 
     RANDS is a weight/bias initialization function.
 
     RANDS(S,PR) takes,
       S  - number of neurons.
       PR - Rx2 matrix of R input ranges.
     and returns an S-by-R weight matrix of random values between -1 and 1.
 
     RANDS(S,R) returns an S-by-R matrix of random values.
     RANDS(S) returns an S-by-1 vector of random values.
 
   Examples
 
     Here three sets of random values are generated with RANDS.
 
       rands(4,[0 1; -2 2])
       rands(4)
       rands(2,3)
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to be initialized with RANDS:
     1) Set NET.initFcn to 'initlay'.
        (NET.initParam will automatically become INITLAY's default parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set each NET.inputWeights{i,j}.initFcn to 'rands'.
        Set each NET.layerWeights{i,j}.initFcn to 'rands';
        Set each NET.biases{i}.initFcn to 'rands'.
 
     To initialize the network call INIT.
 
   See also RANDNR, RANDNC, INITWB, INITLAY, INIT

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:34

Size:

1685 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>initnw.m
ApplicationRoot>WavixIV>neural501>randnr.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>randtop.m

(back to table of contents)
 RANDTOP Random layer topology function.
 
   Syntax
 
     pos = randtop(dim1,dim2,...,dimN)
 
   Description
 
     RANDTOP calculates the neuron positions for layers whose
     neurons are arranged in an N dimensional random pattern.
 
     RANDTOP(DIM1,DIM2,...,DIMN) takes N arguments,
       DIMi - Length of layer in dimension i.
     and returns an NxS matrix of N coordinate vectors
     where S is the product of DIM1*DIM2*...*DIMN.
 
   Examples
 
     This code creates and displays a two-dimensional layer
     with 192 neurons arranged in a 16x12 random pattern.
 
       pos = randtop(16,12); plotsom(pos)
 
     This code plots the connections between the same neurons,
     but shows each neuron at the location of its weight vector.
     The weights are generated randomly so that the layer is
     very unorganized, as is evident in the plot.
 
       W = rands(192,2); plotsom(W,dist(pos))
 
   See also GRIDTOP, HEXTOP.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:50

Size:

1417 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>hextop.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>removeconstantrows.m

(back to table of contents)
 REMOVECONSTANTROWS Remove matrix rows with constant values.
 	
 	Syntax
 
 	  [y,ps] = removeconstantrows(min_range)
 	  [y,ps] = removeconstantrows(x,fp)
 	  y = removeconstantrows('apply',x,ps)
 	  x = removeconstantrows('reverse',y,ps)
 	  dx_dy = removeconstantrows('dx',x,y,ps)
 	  dx_dy = removeconstantrows('dx',x,[],ps)
      name = removeconstantrows('name');
      fp = removeconstantrows('pdefaults');
      names = removeconstantrows('pnames');
      removeconstantrows('pcheck',fp);
 
 	Description
 	
 	  REMOVECONSTANTROWS processes matrices by removing rows with constant values.
 	
 	  REMOVECONSTANTROWS(X,min_range) takes X and an optional parameter,
 	  X - Single NxQ matrix or a 1xTS row cell array of NxQ matrices.
      max_range - max range of values for row to be removed. (Default is 0)
 	  and returns,
      Y - Each MxQ matrix with N-M rows deleted (optional).
      PS - Process settings, to allow consistent processing of values.
 
    REMOVECONSTANTROWS(X,FP) takes parameters as struct: FP.max_range.
    REMOVECONSTANTROWS('apply',X,PS) returns Y, given X and settings PS.
    REMOVECONSTANTROWS('reverse',Y,PS) returns X, given Y and settings PS.
    REMOVECONSTANTROWS('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    REMOVECONSTANTROWS('dx',X,[],PS)  returns the derivative, less efficiently.
    REMOVECONSTANTROWS('name') returns the name of this process method.
    REMOVECONSTANTROWS('pdefaults') returns default process parameter structure.
    REMOVECONSTANTROWS('pdesc') returns the process parameter descriptions.
    REMOVECONSTANTROWS('pcheck',fp) throws an error if any parameter is illegal.
 
 	Examples
 
    Here is how to format a matrix so that the rows with
    constant values are removed.
 	
      x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
      [y1,ps] = removeconstantrows(x1)
 
    Next, we apply the same processing settings to new values.
 
      x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
      y2 = removeconstantrows('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = removeconstantrows('reverse',y1,ps)
 
   See also MAPMINMAX, FIXUNKNOWNS, MAPSTD, PROCESSPCA

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:02

Size:

4247 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>removerows.m

(back to table of contents)
 REMOVEROWS Remove matrix rows with specified indices.
   
   Syntax
 
 	  [y,ps] = removerows(x,ind)
 	  [y,ps] = removerows(fp)
 	  y = removerows('apply',x,ps)
 	  x = removerows('reverse',y,ps)
 	  dx_dy = removerows('dx',x,y,ps)
 	  dx_dy = removerows('dx',x,[],ps)
      name = removerows('name');
      fp = removerows('pdefaults');
      names = removerows('pnames');
      removerows('pcheck',fp);
 
   Description
   
    REMOVEROWS processes matrices by removing rows with the specified indices.
   
 	  REMOVEROWS(X,IND) takes X and an optional parameter,
 	  X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
      IND - Vector of row indices to remove. (Default is [])
 	  and returns,
      Y - Each MxQ matrix, where M==N-length(IND). (optional).
      PS - Process settings, to allow consistent processing of values.
 
    REMOVEROWS(X,FP) takes parameters as struct: FP.ind.
    REMOVEROWS('apply',X,PS) returns Y, given X and settings PS.
    REMOVEROWS('reverse',Y,PS) returns X, given Y and settings PS.
    REMOVEROWS('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    REMOVEROWS('dx',X,[],PS)  returns the derivative, less efficiently.
    REMOVEROWS('name') returns the name of this process method.
    REMOVEROWS('pdefaults') returns default process parameter structure.
    REMOVEROWS('pdesc') returns the process parameter descriptions.
    REMOVEROWS('pcheck',fp) throws an error if any parameter is illegal.
     
 	Examples
 
    Here is how to format a matrix so that rows 2 and 4 are removed:
 	
      x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
      [y1,ps] = removerows(x1,[2 4])
 
    Next, we apply the same processing settings to new values.
 
      x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
      y2 = removerows('apply',x2,ps)
 
    Here we reverse the processing of y1 to get x1 again.
 
      x1_again = removerows('reverse',y1,ps)
 
   Algorithm
 
      In the reverse calculation, the unknown values of replaced
      rows are represented with NaN values.
  
   See also MAPMINMAX, FIXUNKNOWNS, MAPSTD, PROCESSPCA, REMOVECONSTANTROWS

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

16-Jun-2006 21:37:02

Size:

4123 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>satlin.m

(back to table of contents)
 SATLIN Saturating linear transfer function.
 	
 	Syntax
 
 	  A = satlin(N,FP)
    dA_dN = satlin('dn',N,A,FP)
 	  INFO = satlin(CODE)
 
 	Description
 	
 	  SATLIN is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  SATLIN(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ matrix of N's elements clipped to [0, 1].
 	
    SATLIN('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    SATLIN('name') returns the name of this function.
    SATLIN('output',FP) returns the [min max] output range.
    SATLIN('active',FP) returns the [min max] active input range.
    SATLIN('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    SATLIN('fpnames') returns the names of the function parameters.
    SATLIN('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here is the code to create a plot of the SATLIN transfer function.
 	
 	    n = -5:0.1:5;
 	    a = satlin(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'satlin';
 
 	Algorithm
 
 	    a = satlin(n) = 0, if n <= 0
 	                    n, if 0 <= n <= 1
 	                    1, if 1 <= n
 
 	See also SIM, POSLIN, SATLINS, PURELIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:14

Size:

2746 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>satlins.m

(back to table of contents)
 SATLINS Symmetric saturating linear transfer function.
 	
 	Syntax
 
 	  A = satlins(N,FP)
    dA_dN = satlins('dn',N,A,FP)
 	  INFO = satlins(CODE)
 
 	Description
 	
 	  SATLINS is a transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 	
 	  SATLINS(N,FP) takes N and optional function parameters,
 	    N - SxQ Matrix of net input (column) vectors.
 	    FP - Row cell array of function parameters (ignored).
 	  and returns values of N truncated into the interval [-1, 1].
 	
 	  SATLINS is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  SATLINS(N,FP) takes N and an optional argument,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (optional, ignored).
 	  and returns A, the SxQ matrix of N's elements clipped to [-1, 1].
 	
    SATLINS('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    SATLINS('name') returns the name of this function.
    SATLINS('output',FP) returns the [min max] output range.
    SATLINS('active',FP) returns the [min max] active input range.
    SATLINS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    SATLINS('fpnames') returns the names of the function parameters.
    SATLINS('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here is the code to create a plot of the SATLINS transfer function.
 	
 	    n = -5:0.1:5;
 	    a = satlins(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'satlins';
 
 	Algorithm
 
 	    a = satlins(n) = -1, if n <= -1
 	                      n, if -1 <= n <= 1
 	                      1, if 1 <= n
 
 	See also SIM, SATLIN, POSLIN, PURELIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:16

Size:

3134 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>scalprod.m

(back to table of contents)
 SCALPROD Scalar product weight function.
 
 	Syntax
 
 	  Z = scalprod(W,P,FP)
      dim = scalprod('size',S,R,FP)
      dp = scalprod('dp',W,P,Z,FP)
      dw = scalprod('dw',W,P,Z,FP)
 	  info = scalrod(code)
 
 	Description
 
 	  SCALROD is the scalar product weight function.  Weight functions
 	  apply weights to an input to get weighted inputs.
 
 	  SCALPROD(W,P) takes these inputs,
 	    W - 1x1 weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	  and returns the RxQ scalar product of W and P defined by:
        Z = w*P
 
 	  SCALPROD(code) returns information about this function.
 	  These codes are defined:
 	    'deriv'      - Name of derivative function.
        'fullderiv'  - Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
        'pfullderiv' - Input: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
        'wfullderiv' - Weight: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 
      SCALPROD('size',S,R,FP) takes the layer dimension S, input dimention R,
      and function parameters, and returns the weight size [1x1].
 
      SCALPROD('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
      SCALPROD('dw',W,P,Z,FP) returns the derivative of Z with respect to W.
 
 	Examples
 
 	  Here we define a random weight matrix W and input vector P
 	  and calculate the corresponding weighted input Z.
 
 	    W = rand(1,1);
 	    P = rand(3,1);
 	    Z = scalprod(W,P)
 
 	Network Use
 
 	  To change a network so an input weight uses SCALPROD set
 	  NET.inputWeight{i,j}.weightFcn to 'scalprod.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'scalprod.
 
 	  In either case, call SIM to simulate the network with SCALPROD.
 	  See NEWP and NEWLIN for simulation examples.
 
 	See also DOTPROD, SIM, DIST, NEGDIST, NORMPROD.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:26

Size:

3440 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>seq2con.m

(back to table of contents)
 SEQ2CON Convert sequential vectors to concurrent vectors.
 
   Syntax
 
     b = seq2con(s)
 
   Description
 
     The neural network toolbox represents batches of vectors
     with a matrix, and sequences of vectors with multiple
     columns of a cell array.
 
     SEQ2CON and CON2SEQ allow concurrent vectors to be converted
     to sequential vectors, and back again.
 
     SEQ2CON(S) takes one input,
       S - NxTS cell array of matrices with M columns.
     and returns,
       B - Nx1 cell array of matrices with M*TS columns.
 
   Example
 
     Here three sequential values are converted to concurrent values.
 
       p1 = {1 4 2}
       p2 = seq2con(p1)
 
     Here two sequences of vectors over three time steps
     are converted to concurrent vectors.
 
       p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
       p2 = seq2con(p1)
 
   See also CON2SEQ, CONCUR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:24

Size:

1324 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>setx.m

(back to table of contents)
 SETX Set all network weight and bias values with a single vector.
 
   Syntax
 
     net = setx(net,X)
 
   Description
 
     This function sets a networks weight and biases to
     a vector of values.
 
     NET = SETX(NET,X)
       NET - Neural network.
       X   - Vector of weight and bias values.
 
   Examples
 
     Here we create a network with a 2-element input, and one
     layer of 3 neurons.
 
       net = newff([0 1; -1 1],[3]);
 
     The network has six weights (3 neurons * 2 input elements)
     and three biases (3 neurons) for a total of 9 weight and bias
     values.  We can set them to random values as follows:
 
       net = setx(net,rand(9,1));
 
     We can then view the weight and bias values as follows:
 
       net.iw{1,1}
       net.b{1}
 
   See also GETX, FORMX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Apr-2002 16:18:18

Size:

1508 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>srchbac.m
ApplicationRoot>WavixIV>neural501>srchbre.m
ApplicationRoot>WavixIV>neural501>srchcha.m
ApplicationRoot>WavixIV>neural501>srchgol.m
ApplicationRoot>WavixIV>neural501>srchhyb.m
ApplicationRoot>WavixIV>neural501>template_search.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>slblocks.m

(back to table of contents)
 SLBLOCKS Defines the block library for a specific Toolbox or Blockset.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:26

Size:

723 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>softmax.m

(back to table of contents)
 SOFTMAX Soft max transfer function.
 	
 	Syntax
 
 	  A = softmax(N,FP)
    dA_dN = softmax('dn',N,A,FP)
 	  INFO = softmax(CODE)
 
 	Description
 	
 	  SOFTMAX is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  SOFTMAX(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ matrix of the softmax competitive function
    applied to each column of N.
 	
    SOFTMAX('dn',N,A,FP) returns SxSxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    SOFTMAX('name') returns the name of this function.
    SOFTMAX('output',FP) returns the [min max] output range.
    SOFTMAX('active',FP) returns the [min max] active input range.
    SOFTMAX('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    SOFTMAX('fpnames') returns the names of the function parameters.
    SOFTMAX('fpdefaults') returns the default function parameters.
 
 	Examples
 
 	  Here we define a net input vector N, calculate the output,
 	  and plot both with bar graphs.
 
 	    n = [0; 1; -0.5; 0.5];
 	    a = softmax(n);
 	    subplot(2,1,1), bar(n), ylabel('n')
 	    subplot(2,1,2), bar(a), ylabel('a')
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'softmax';
 
    Algorithm
 
        a = softmax(n) = exp(n)/sum(exp(n))
 
 	See also SIM, COMPET.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:16

Size:

3132 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>sp2narx.m

(back to table of contents)
 SP2NARX Convert a series-parallel NARX network to parallel (feedback) form.
 
   Syntax
 
     net = sp2narx(NET)
 
   Description
 
     SP2NARX(NET) takes,
       NET - Original NARX network in series-parallel form
     and returns an NARX network in parallel (feedback) form.
 
   Examples
 
     Here a series-parallel narx network is created.  The network's input ranges
     from [-1 to 1].  The first layer has five TANSIG neurons, the
     second layer has one PURELIN neuron.  The TRAINLM network
     training function is to be used.
 
       net = newnarxsp({[-1 1] [-1 1]},[1 2],[1 2],[5 1],{'tansig' 'purelin'});
 
     Here the network is converted from series parallel to parallel narx.
 
        net2 = sp2narx(net);
 
   See also NEWNARXSP, NEWNARX

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

25-Jan-2006 19:49:22

Size:

1217 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>srchbac.m

(back to table of contents)
 SRCHBAC One-dimensional minimization using backtracking.
 
   Syntax
   
     [a,gX,perf,retcode,delta,tol] = srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
 
   Description
 
     SRCHBAC is a linear search routine.  It searches in a given direction
      to locate the minimum of the performance function in that direction.
      It uses a technique called backtracking.
 
   SRCHBAC(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
       RETCODE - Return code which has three elements. The first two elements correspond to
                  the number of function evaluations in the two stages of the search
                 The third element is a return code. These will have different meanings
                  for different search algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
     Parameters used for the backstepping algorithm are:
       alpha     - Scale factor which determines sufficient reduction in perf.
       beta      - Scale factor which determines sufficiently large step size.
       low_lim   - Lower limit on change in step size.
       up_lim    - Upper limit on change in step size.
       maxstep   - Maximum step length.
       minstep   - Minimum step length.
       scale_tol - Parameter which relates the tolerance tol to the initial step
                    size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     You can create a standard network that uses SRCHBAC with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF using
      the line search function SRCHBAC:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'srchbac'.
 
     The SRCHBAC function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function and the SRCHBAC search function are used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
        net.trainParam.searchFcn = 'srchbac';
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
 
   Algorithm
 
     SRCHBAC locates the minimum of the performance function in
     the search direction dX, using the backtracking algorithm 
     described on page 126 and 328 of Dennis and Schnabel.
      (Numerical Methods for Unconstrained Optimization and Nonlinear Equations 1983).
 
   See also SRCHBRE, SRCHCHA, SRCHGOL, SRCHHYB
 
    References    
 
      Dennis and Schnabel, Numerical Methods for Unconstrained Optimization
      and Nonlinear Equations, 1983.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:42

Size:

13488 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>srchbre.m

(back to table of contents)
 SRCHBRE One-dimensional interval location using Brent's method.
 
   Syntax
   
     [a,gX,perf,retcode,delta,tol] = srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
 
   Description
 
     SRCHBRE is a linear search routine.  It searches in a given direction
      to locate the minimum of the performance function in that direction.
      It uses a technique called Brent's method.
 
   SRCHBRE(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
       RETCODE - Return code which has three elements. The first two elements correspond to
                  the number of function evaluations in the two stages of the search
                 The third element is a return code. These will have different meanings
                  for different search algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
      Parameters used for the brent algorithm are:
       alpha     - Scale factor which determines sufficient reduction in perf.
       beta      - Scale factor which determines sufficiently large step size.
       bmax      - Largest step size.
       scale_tol - Parameter which relates the tolerance tol to the initial step
                    size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     You can create a standard network that uses SRCHBRE with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF and
      to use the line search function SRCHBRE:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'srchbre'.
 
     The SRCHBRE function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function and the SRCHBRE search function are to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
        net.trainParam.searchFcn = 'srchbre';
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
 
   Algorithm
 
     SRCHBRE brackets the minimum of the performance function in
     the search direction dX, using Brent's
     algorithm described on page 46 of Scales (Introduction to 
      Non-Linear Estimation 1985). It is a hybrid algorithm based on 
      the golden section search and quadratic approximation.
 
   See also SRCHBAC, SRCHCHA, SRCHGOL, SRCHHYB
 
    References
 
      Brent, Introduction to Non-Linear Estimation, 1985.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:44

Size:

11397 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>srchcha.m

(back to table of contents)
 SRCHCHA One-dimensional minimization using the method of Charalambous.
 
   Syntax
   
   [a,gX,perf,retcode,delta,tol] = srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,
                                                perf,dperf,delta,tol,ch_perf)
 
   Description
 
     SRCHCHA is a linear search routine.  It searches in a given direction
      to locate the minimum of the performance function in that direction.
      It uses a technique based on the method of Charalambous.
 
   SRCHCHA(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) 
    takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
        RETCODE - Return code which has three elements. The first two elements 
                  correspond to the number of function evaluations in the two
                  stages of the search.  The third element is a return code.
                 These will have different meanings for different search 
                  algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
     Parameters used for the Charalombous algorithm are:
       alpha     - Scale factor which determines sufficient reduction in perf.
       beta      - Scale factor which determines sufficiently large step size.
       gama      - Parameter to avoid small reductions in performance. Usually 
                    set to 0.1.
       scale_tol - Parameter which relates the tolerance tol to the initial step
                    size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     You can create a standard network that uses SRCHCHA with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF using
      the line search function SRCHCHA:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'srchcha'.
 
     The SRCHCHA function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function and the SRCHCHA search function are to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
        net.trainParam.searchFcn = 'srchcha';
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
 
   Algorithm
 
     SRCHCHA locates the minimum of the performance function in
     the search direction dX, using an algorithm based on
     the method described in Charalambous (IEE Proc. vol. 139, no. 3, June 1992).
 
   See also SRCHBAC, SRCHBRE, SRCHGOL, SRCHHYB
 
    References
 
      Charalambous, IEEE Proceedings, vol. 139, no. 3, June 1992.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:44

Size:

9472 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>srchgol.m

(back to table of contents)
 SRCHGOL One-dimensional minimization using golden section search.
 
   Syntax
   
     [a,gX,perf,retcode,delta,tol] = srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
 
   Description
 
     SRCHGOL is a linear search routine.  It searches in a given direction
      to locate the minimum of the performance function in that direction.
      It uses a technique called the golden section search.
 
   SRCHGOL(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
       RETCODE - Return code which has three elements. The first two elements correspond to
                  the number of function evaluations in the two stages of the search
                 The third element is a return code. These will have different meanings
                  for different search algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
   Parameters used for the golden section algorithm are:
     alpha     - Scale factor which determines sufficient reduction in perf.
     bmax      - Largest step size.
     scale_tol - Parameter which relates the tolerance tol to the initial step
                  size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     You can create a standard network that uses SRCHGOL with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF using the 
      line search function SRCHGOL:
      
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'srchgol'.
 
     The SRCHGOL function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function and the SRCHGOL search function are to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
        net.trainParam.searchFcn = 'srchgol';
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
 
   Algorithm
 
     SRCHGOL locates the minimum of the performance function in
     the search direction dX, using the
     golden section search. It is based on the algorithm as
     described on page 33 of Scales (Introduction to Non-Linear Estimation 1985).
 
   See also SRCHBAC, SRCHBRE, SRCHCHA, SRCHHYB
 
    References
 
      Scales, Introduction to Non-Linear Estimation, 1985.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:46

Size:

8834 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>srchhyb.m

(back to table of contents)
 SRCHHYB One-dimensional minimization using a hybrid bisection-cubic search.
 
   Syntax
   
     [a,gX,perf,retcode,delta,tol] = srchhyb(net,X,P,T,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
 
   Description
 
     SRCHHYB is a linear search routine.  It searches in a given direction
      to locate the minimum of the performance function in that direction.
      It uses a technique which is a combination of a bisection and a
      cubic interpolation.
 
   SRCHHYB(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
       RETCODE - Return code which has three elements. The first two elements correspond to
                  the number of function evaluations in the two stages of the search
                 The third element is a return code. These will have different meanings
                  for different search algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
     Parameters used for the hybrid bisection-cubic algorithm are:
       alpha     - Scale factor which determines sufficient reduction in perf.
       beta      - Scale factor which determines sufficiently large step size.
       bmax      - Largest step size.
       scale_tol - Parameter which relates the tolerance tol to the initial step
                    size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     You can create a standard network that uses SRCHHYB with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF using
      the line search function SRCHHYB:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'srchhyb'.
 
     The SRCHHYB function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function and the SRCHHYB search function are to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
        net.trainParam.searchFcn = 'srchhyb';
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
 
   Algorithm
 
     SRCHHYB locates the minimum of the performance function in
     the search direction dX, using the hybrid
     bisection-cubic interpolation algorithm described on page 50 of Scales.
     (Introduction to Non-Linear Estimation 1985)
 
   See also SRCHBAC, SRCHBRE, SRCHCHA, SRCHGOL
 
    References
 
      Scales, Introduction to Non-Linear Estimation, 1985.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:46

Size:

11492 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>sse.m

(back to table of contents)
 SSE Sum squared error performance function.
 
   Syntax
 
     perf = sse(E,Y,X,FP)
     dPerf_dy = sse('dy',E,Y,X,perf,FP);
     dPerf_dx = sse('dx',E,Y,X,perf,FP);
     info = sse(code)
 
   Description
 
     SSE is a network performance function.  It measures
     performance according to the sum of squared errors.
   
     SSE(E,Y,X,PP) takes E and optional function parameters,
       E - Matrix or cell array of error vectors.
       Y - Matrix or cell array of output vectors. (ignored).
       X  - Vector of all weight and bias values (ignored).
       FP - Function parameters (ignored).
      and returns the sum squared error.
 
     SSE('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     SSE('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
 
     SSE('name') returns the name of this function.
     SSE('pnames') returns the name of this function.
     SSE('pdefaults') returns the default function parameters.
   
   Examples
 
     Here a two layer feed-forward is created with a 1-element input
     ranging from -10 to 10, four hidden TANSIG neurons, and one
     PURELIN output neuron.
 
       net = newff([-10 10],[4 1],{'tansig','purelin'});
 
     Here the network is given a batch of inputs P.  The error
     is calculated by subtracting the output A from target T.
     Then the sum squared error is calculated.
 
       p = [-10 -5 0 5 10];
       t = [0 0 1 1 1];
       y = sim(net,p)
       e = t-y
       perf = sse(e)
 
     Note that SSE can be called with only one argument because
     the other arguments are ignored.  SSE supports those arguments
     to conform to the standard performance function argument list.
 
   Network Use
 
     To prepare a custom network to be trained with SSE set
     NET.performFcn to 'sse'.  This will automatically set
     NET.performParam to the empty matrix [], as SSE has no
     performance parameters.
 
     Calling TRAIN or ADAPT will result in SSE being used to calculate
     performance.
 
   See also DSSE.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:22

Size:

3199 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>substring.m

(back to table of contents)
  SUBSTRING Return part of a Java string.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

17-Aug-2004 16:42:24

Size:

287 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>nnguitools.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>tansig.m

(back to table of contents)
 TANSIG Hyperbolic tangent sigmoid transfer function.
  
  Syntax
 
    A = tansig(N,FP)
    dA_dN = tansig('dn',N,A,FP)
    INFO = tansig(CODE)
 
  Description
  
    TANSIG is a neural transfer function.  Transfer functions
    calculate a layer's output from its net input.
 
    TANSIG(N,FP) takes N and optional function parameters,
      N - SxQ matrix of net input (column) vectors.
      FP - Struct of function parameters (ignored).
    and returns A, the SxQ matrix of N's elements squashed into [-1 1].
  
    TANSIG('dn',N,A,FP) returns derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    TANSIG('name') returns the name of this function.
    TANSIG('output',FP) returns the [min max] output range.
    TANSIG('active',FP) returns the [min max] active input range.
    TANSIG('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    TANSIG('fpnames') returns the names of the function parameters.
    TANSIG('fpdefaults') returns the default function parameters.
 
  Examples
 
    Here the code to create a plot of the TANSIG transfer function.
  
      n = -5:0.1:5;
      a = tansig(n);
      plot(n,a)
 
    Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'tansig';
 
  Algorithm
 
      a = tansig(n) = 2/(1+exp(-2*n))-1
 
    This is mathematically equivalent to TANH(N).  It differs
    in that it runs faster than the MATLAB implementation of TANH,
    but the results can have very small numerical differences.  This
    function is a good trade off for neural networks, where speed is
    important and the exact shape of the transfer function is not.
 
  See also SIM, DTANSIG, LOGSIG.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:18

Size:

3052 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_init_layer.m

(back to table of contents)
 TEMPLATE_INIT_LAYER Template layer initialization function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNINIT to see a list of other layer initialization functions.
 
   Syntax
 
     net = template_init_layer(net,i)
   
   Description
 
     TEMPLATE_INIT_LAYER(NET,i) takes two arguments,
       NET - Neural network.
       i   - Index of a layer.
     and returns the network with layer i's weights and biases updated.
 
   Network Use
 
     To prepare a custom network to be initialized with TEMPLATE_INIT_LAYER:
     1) Set NET.initFcn to 'initlay'.
        (This will set NET.initParam to the empty matrix [] since
        INITLAY has no initialization parameters.)
     2) Set NET.layers{i}.initFcn to 'template_init_layer'.
     To initialize the network call INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:18:58

Size:

1726 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_init_network.m

(back to table of contents)
 TEMPLATE_INIT_NETWORK Template network initialization function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNINIT to see a list of other network initialization functions.
 
   Syntax
 
     net = template_init_network(net)
     info = template_init_network(code)
 
   Description
 
     TEMPLATE_INIT_NETWORK(NET) takes:
       NET - Neural network.
     and returns the network with each layer updated.
 
     TEMPLATE_INIT_NETWORK(CODE) return useful information for each CODE string:
       'pnames'    - Names of initialization parameters.
       'pdefaults' - Default initialization parameters.
 
   Network Use
 
     To prepare a custom network to be initialized with
     TEMPLATE_INIT_NETWORK set NET.initFcn to 'template_init_network'.
     To initialize the network call INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:18:58

Size:

2395 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_init_wb.m

(back to table of contents)
 TEMPLATE_INIT_WB Template weight/bias initialization function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNINIT to see a list of other weight/bias initialization functions.
 
   Syntax
 
     W = template_init_wb(S,PR)
     b = template_init_wb(S)
 
   Description
 
     RANDS(S,PR) takes,
       S  - number of neurons.
       PR - Rx2 matrix of R input ranges.
     and returns an S-by-R weight matrix of random values between -1 and 1.
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to be initialized with TEMPLATE_INIT_WB:
     1) Set NET.initFcn to 'initlay'.
        (NET.initParam will automatically become INITLAY's default parameters.)
     2) Set NET.layers{i}.initFcn to 'initwb'.
     3) Set each NET.inputWeights{i,j}.initFcn to 'template_init_wb'.
        Set each NET.layerWeights{i,j}.initFcn to 'template_init_wb';
        Set each NET.biases{i}.initFcn to 'template_init_wb'.
     To initialize the network call INIT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:00

Size:

1624 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_learn.m

(back to table of contents)
 TEMPLATE_LEARN Template learning function.
   
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNLEARN to see a list of other learning functions.
 
   Syntax
   
     [dW,LS] = template_learn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
     [db,LS] = template_learn(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
     info = template_learn(code)
 
   Description
 
     TEMPLATE_LEARN(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
       W  - SxR weight matrix (or Sx1 bias vector).
       P  - RxQ input vectors (or ones(1,Q)).
       Z  - SxQ weighted input vectors.
       N  - SxQ net input vectors.
       A  - SxQ output vectors.
       T  - SxQ layer target vectors.
       E  - SxQ layer error vectors.
       gW - SxR gradient with respect to performance.
       gA - SxQ output gradient with respect to performance.
       D  - SxS neuron distances.
       LP - Learning parameters, none, LP = [].
       LS - Learning state, initially should be = [].
     and returns
       dW - SxR weight (or bias) change matrix.
       LS - New learning state.
 
     TEMPLATE_LEARN(CODE) return useful information for each CODE string:
       'pnames'    - Returns names of learning parameters.
       'pdefaults' - Returns default learning parameters.
       'needg'     - Returns 1 if this function uses gW or gA.
 
   Network Use
 
     To prepare the weights and the bias of layer i of a custom network
     to train or adapt with TEMPLATE_LEARN:
     1) Set NET.trainFcn to 'trainb' or NET.adaptFcn to 'trains'.
     2) Set each NET.inputWeights{i,j}.learnFcn to 'template_learn'.
        Set each NET.layerWeights{i,j}.learnFcn to 'template_learn'.
        Set NET.biases{i}.learnFcn to 'template_learn'.
        Each weight and bias learning parameter property will automatically
        be set to TEMPLATE_LEARN's default parameters.
     To train or adapt the network use TRAIN or ADAPT.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:00

Size:

3156 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_net_input.m

(back to table of contents)
 TEMPLATE_NET_INPUT Template net input function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNNETINPUT to see a list of other net input functions.
 
 	Syntax
 
 	  N = template_net_input({Z1,Z2,...,Zn},FP)
    dN_dZj = template_net_input('dz',j,Z,N,FP)
 	  INFO = template_net_input(CODE)
 
 	Description
 
 	  TEMPLATE_NET_INPUT({Z1,Z2,...,Zn},FP) takes these arguments,
 	    Zi - SxQ matrices in a row cell array.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  Returns element-wise product of Z1 to Zn.
 
 	  TEMPLATE_NET_INPUT(code) returns information about this function.
 	  These codes are defined:
      'fullderiv'  - Full NxSxQ derivative = 1, Element-wise SxQ derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
 	Network Use
 
 	  To change a network so that a layer uses TEMPLATE_NET_INPUT, set
 	  NET.layers{i}.netInputFcn to 'template_net_input'.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:02

Size:

3234 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_net.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_new_network.m

(back to table of contents)
 TEMPLATE_NEW_NETWORK Template new network function.
   
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNNETWORK to see a list of other new network functions.
 
   Syntax
   
     net = template_new_network(...args...)
 
   Description
 
     TEMPLATE_NEW_NETWORK(..args...) takes however many args you want
     to define and returns a new network.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:02

Size:

1134 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_performance.m

(back to table of contents)
 TEMPLATE_PERFORMANCE Template performance function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNPERFORMANCE to see a list of other performance functions.
 
   Syntax
 
     perf = template_performance(E,Y,X,FP)
     dPerf_dy = template_performance('dy',E,Y,X,perf,FP);
     dPerf_dx = template_performance('dx',E,Y,X,perf,FP);
     info = template_performance(code)
 
   Description
 
     TEMPLATE_PERFORMANCE(E,Y,X,PP) takes E and optional function parameters,
       E - Matrix or cell array of error vectors.
       Y - Matrix or cell array of output vectors. (ignored).
       X  - Vector of all weight and bias values (ignored).
       FP - Function parameters (ignored).
      and returns the mean squared error.
 
     TEMPLATE_PERFORMANCE('dy',E,Y,X,PERF,FP) returns derivative of PERF with respect to Y.
     TEMPLATE_PERFORMANCE('dx',E,Y,X,PERF,FP) returns derivative of PERF with respect to X.
     TEMPLATE_PERFORMANCE('name') returns the name of this function.
     TEMPLATE_PERFORMANCE('pnames') returns the name of this function.
     TEMPLATE_PERFORMANCE('pdefaults') returns the default function parameters.
 
   Network Use
 
     To prepare a custom network to be trained with TEMPLATE_PERFORMANCE set
     NET.performFcn to 'template_performance'.  This will automatically set
     NET.performParam to the default functions parameters.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:04

Size:

4476 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_process.m

(back to table of contents)
 TEMPLATE_PROCESS Template data processing function.
   
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNPROCESS to see a list of other processing functions.
 
   Syntax
 
 	  [y,ps] = template_process(x,...1 to 3 args...)
 	  [y,ps] = template_process(x,fp)
 	  y = template_process('apply',x,ps)
 	  x = template_process('reverse',y,ps)
 	  dx_dy = template_process('dx',x,y,ps)
 	  dx_dy = template_process('dx',x,[],ps)
    name = template_process('name');
    fp = template_process('pdefaults');
    names = template_process('pnames');
    template_process('pcheck',fp);
 
   Description
   
 	  TEMPLATE_PROCESS(X,...1 to 3 args...) takes X and optional parameters,
 	    X - NxQ matrix or a 1xTS row cell array of NxQ matrices.
      arg1 - Optional argument, default = ?
      arg2 - Optional argument, default = ?
      arg3 - Optional argument, default = ?
 	  and returns,
      Y - Each MxQ matrix (where M == N) (optional).
      PS - Process settings, to allow consistent processing of values.
 
    TEMPLATE_PROCESS(X,FP) takes parameters as struct: FP.arg1, etc.
    TEMPLATE_PROCESS('apply',X,PS) returns Y, given X and settings PS.
    TEMPLATE_PROCESS('reverse',Y,PS) returns X, given Y and settings PS.
    TEMPLATE_PROCESS('dx',X,Y,PS) returns MxNxQ derivative of Y w/respect to X.
    TEMPLATE_PROCESS('dx',X,[],PS)  returns the derivative, less efficiently.
    TEMPLATE_PROCESS('name') returns the name of this process method.
    TEMPLATE_PROCESS('pdefaults') returns default process parameter structure.
    TEMPLATE_PROCESS('pdesc') returns the process parameter descriptions.
    TEMPLATE_PROCESS('pcheck',fp) throws an error if any parameter is illegal.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:04

Size:

4810 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_process.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_search.m

(back to table of contents)
 TEMPLATE_SEARCH Template line search function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNSEARCH to see a list of other line search functions.
 
   Syntax
   
     [a,gX,perf,retcode,delta,tol] = template_search(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
 
   Description
 
   TEMPLATE_SEARCH(NET,X,Pd,Tl,Ai,Q,TS,dX,gX,PERF,DPERF,DELTA,TOL,CH_PERF) takes these inputs,
       NET     - Neural network.
       X       - Vector containing current values of weights and biases.
       Pd      - Delayed input vectors.
       Tl      - Layer target vectors.
       Ai      - Initial input delay conditions.
       Q       - Batch size.
       TS      - Time steps.
       dX      - Search direction vector.
       gX      - Gradient vector.
       PERF    - Performance value at current X.
       DPERF   - Slope of performance value at current X in direction of dX.
       DELTA   - Initial step size.
       TOL     - Tolerance on search.
       CH_PERF - Change in performance on previous step.
     and returns,
       A       - Step size which minimizes performance.
       gX      - Gradient at new minimum point.
       PERF    - Performance value at new minimum point.
       RETCODE - Return code which has three elements. The first two elements correspond to
                  the number of function evaluations in the two stages of the search
                 The third element is a return code. These will have different meanings
                  for different search algorithms. Some may not be used in this function.
                    0 - normal; 1 - minimum step taken; 2 - maximum step taken;
                    3 - beta condition not met.
       DELTA   - New initial step size. Based on the current step size.
       TOL     - New tolerance on search.
 
     Parameters used for the backstepping algorithm are:
       alpha     - Scale factor which determines sufficient reduction in perf.
       beta      - Scale factor which determines sufficiently large step size.
       low_lim   - Lower limit on change in step size.
       up_lim    - Upper limit on change in step size.
       maxstep   - Maximum step length.
       minstep   - Minimum step length.
       scale_tol - Parameter which relates the tolerance tol to the initial step
                    size delta. Usually set to 20.
      The defaults for these parameters are set in the training function which
      calls it.  See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
       Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
       Nl = net.numLayers
       LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
   Network Use
 
     To prepare a custom network to be trained with TRAINCGF using
      the line search function TEMPLATE_SEARCH:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam.searchFcn to 'template_search'.
 
     The SRCHBAC function can be used with any of the following
      training functions: TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:06

Size:

12183 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_topology.m

(back to table of contents)
 TEMPLATE_TOPOLOGY Template topology function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNTEMPLATE to see a list of other topology functions.
 
   Syntax
 
     pos = template_topology(dim1,dim2,...,dimN)
 
   Description
 
     TEMPLATE_TOPOLOGY(DIM1,DIM2,...,DIMN) takes N arguments,
       DIMi - Length of layer in dimension i.
     and returns an NxS matrix of N coordinate vectors
     where S is the product of DIM1*DIM2*...*DIMN.
 
 	Network Use
 
 	  To change a network so a layer uses TEMPLATE_TOPOLOGY set
 	  NET.layer{i}.topologyFcn to 'template_topology.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:06

Size:

1399 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_train.m

(back to table of contents)
 TEMPLATE_TRAIN Template train function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNSEARCH to see a list of other line search functions.
 
   Syntax
   
     [net,TR,Ac,El] = template_train(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = template_train(code)
 
   Description
 
     TEMPLATE_TRAIN(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed inputs.
       Tl  - Layer targets.
       Ai  - Initial input conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element Pd{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix or [].
       Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
       Nl = net.numLayers
       LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TEMPLATE_TRAIN(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     To prepare a custom network to be trained with TRAINB:
     1) Set NET.trainFcn to 'template_train'.
        (This will set NET.trainParam to TRAINB's default parameters.)

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:08

Size:

9577 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_transfer.m

(back to table of contents)
 TEMPLATE_TRANSFER Template transfer function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNTRANSFER to see a list of other transfer functions.
 
 	Syntax
 
 	  A = template_transfer(N,FP)
    dA_dN = template_transfer('dn',N,A,FP)
 	  INFO = template_transfer(CODE)
 
 	Description
 
 	  TEMPLATE_TRANSFER(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, the SxQ boolean matrix with 1's where N >= 0.
 	
    TEMPLATE_TRANSFER('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    TEMPLATE_TRANSFER('name') returns the name of this function.
    TEMPLATE_TRANSFER('output',FP) returns the [min max] output range.
    TEMPLATE_TRANSFER('active',FP) returns the [min max] active input range.
    TEMPLATE_TRANSFER('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    TEMPLATE_TRANSFER('fpnames') returns the names of the function parameters.
    TEMPLATE_TRANSFER('fpdefaults') returns the default function parameters.
 	
 	Network Use
 
 	  To change a network so a layer uses TEMPLATE_TRANSFER set
 	  NET.layer{i}.transferFcn to 'template_transfer.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:08

Size:

3606 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>template_weight.m

(back to table of contents)
 TEMPLATE_WEIGHT Template weight function.
 
   WARNING - Future versions of the toolbox may require you to update
   custom functions.
 
   Directions for Customizing
 
     1. Make a copy of this function with a new name
     2. Edit your new function according to the code comments marked ***
     3. Type HELP NNWEIGHT to see a list of other weight functions.
 
 	Syntax
 
      Z = template_weight(W,P,FP)
      info = template_weight(code)
      dim = template_weight('size',S,R,FP)
      dp = template_weight('dp',W,P,Z,FP)
      dw = template_weight('dw',W,P,Z,FP)
 
 	Description
 
 	  TEMPLATE_WEIGHT(W,P,FP) takes these inputs,
 	    W - SxR weight matrix.
 	    P - RxQ matrix of Q input (column) vectors.
 	    FP - Row cell array of function parameters (optional, ignored).
 	  and returns the SxQ dot product of W and P.
 
 	  TEMPLATE_WEIGHT(code) returns information about this function.
 	  These codes are defined:
 	    'pfullderiv' - Input: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
      'wfullderiv' - Weight: Reduced derivative = 2, Full derivative = 1, linear derivative = 0.
 	    'name'       - Full name.
 	    'fpnames'    - Returns names of function parameters.
 	    'fpdefaults' - Returns default function parameters.
 
    TEMPLATE_WEIGHT('size',S,R,FP) takes the layer dimension S, input dimention R,
    and function parameters, and returns the weight size [SxR].
    TEMPLATE_WEIGHT('dp',W,P,Z,FP) returns the derivative of Z with respect to P.
    TEMPLATE_WEIGHT('dw',W,P,Z,FP) returns the derivative of Z with respect to W.
 
 	Network Use
 
 	  To change a network so an input weight uses TEMPLATE_WEIGHT set
 	  NET.inputWeight{i,j}.weightFcn to 'template_weight.  For a layer weight
 	  set NET.inputWeight{i,j}.weightFcn to 'template_weight.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:10

Size:

4766 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_weight.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainb.m

(back to table of contents)
 TRAINB Batch training with weight & bias learning rules.
 
   Syntax
   
     [net,TR,Ac,El] = trainb(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainb(code)
 
   Description
 
     TRAINB is not called directly.  Instead it is called by TRAIN for
     network's whose NET.trainFcn property is set to 'trainb'.
 
     TRAINB trains a network with weight and bias learning rules
     with batch updates. The weights and biases are updated at the end of
     an entire pass through the input data.
 
     TRAINB(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed inputs.
       Tl  - Layer targets.
       Ai  - Initial input conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINWB's training parameters,
     shown here with their default values:
       net.trainParam.epochs  100  Maximum number of epochs to train
       net.trainParam.goal      0  Performance goal
       net.trainParam.max_fail  5  Maximum validation failures
       net.trainParam.show     25  Epochs between displays (NaN for no displays)
       net.trainParam.time    inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element Pd{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix or [].
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINB(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINB by calling
     NEWLIN.
 
     To prepare a custom network to be trained with TRAINB:
     1) Set NET.trainFcn to 'trainb'.
        (This will set NET.trainParam to TRAINB's default parameters.)
     2) Set each NET.inputWeights{i,j}.learnFcn to a learning function.
        Set each NET.layerWeights{i,j}.learnFcn to a learning function.
        Set each NET.biases{i}.learnFcn to a learning function.
        (Weight and bias learning parameters will automatically be
        set to default values for the given learning function.)
 
     To train the network:
     1) Set NET.trainParam properties to desired values.
     2) Set weight and bias learning parameters to desired values.
     3) Call TRAIN.
 
     See NEWLIN for training examples.
 
   Algorithm
 
     Each weight and bias updates according to its learning function
     after each epoch (one pass through the entire set of input vectors).
 
     Training stops when any of these conditions are met:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) Performance has been minimized to the GOAL.
     3) The maximum amount of TIME has been exceeded.
     4) Validation performance has increase more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWP, NEWLIN, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:50

Size:

10767 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainbfg.m

(back to table of contents)
 TRAINBFG BFGS quasi-Newton backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainbfg(code)
 
   Description
 
     TRAINBFG is a network training function that updates weight and
     bias values according to the BFGS quasi-Newton method.
 
   TRAINBFG(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINBFG's training parameters,
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
        net.trainParam.searchFcn 'srchcha'  Name of line search routine to use.
 
    Parameters related to line search methods (not all used for all methods):
       net.trainParam.scal_tol         20  Divide into delta to determine tolerance for linear search.
       net.trainParam.alpha         0.001  Scale factor which determines sufficient reduction in perf.
       net.trainParam.beta            0.1  Scale factor which determines sufficiently large step size.
       net.trainParam.delta          0.01  Initial step size in interval location step.
       net.trainParam.gama            0.1  Parameter to avoid small reductions in performance. Usually set
                                            to 0.1. (See use in SRCH_CHA.)
       net.trainParam.low_lim         0.1  Lower limit on change in step size.
       net.trainParam.up_lim          0.5  Upper limit on change in step size.
       net.trainParam.maxstep         100  Maximum step length.
       net.trainParam.minstep      1.0e-6  Minimum step length.
       net.trainParam.bmax             26  Maximum step size.
       net.trainParam.batch_frag        0  In case of multiple batches they are considered independent.
                                            Any non zero value implies a fragmented batch, so final layers
                                            conditions of a previous trained epoch are used as initial 
                                            conditions for next epoch.
 
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINBFG(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINBFG with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINBFG:
     1) Set NET.trainFcn to 'trainbfg'.
        This will set NET.trainParam to TRAINBFG's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINBFG.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       P = [0 1 2 3 4 5];
       T = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINBFG
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'trainbfg');
       a = sim(net,P)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,P,T);
       a = sim(net,P)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINBFG can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
        X = X + a*dX;
 
      where dX is the search direction.  The parameter a is selected
      to minimize the performance along the search direction.  The line
      search function searchFcn is used to locate the minimum point.
      The first search direction is the negative of the gradient of performance.
      In succeeding iterations the search direction is computed 
      according to the following formula:
 
        dX = -H\gX;
 
      where gX is the gradient and H is an approximate Hessian matrix.
     See page 119 of Gill, Murray & Wright (Practical Optimization  1981) for
      a more detailed discussion of the BFGS quasi-Newton method.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINRP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINCGP,
            TRAINOSS.
 
    References
 
      Gill, Murray & Wright, Practical Optimization, 1981.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:52

Size:

17953 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainbr.m

(back to table of contents)
 TRAINBR Bayesian Regulation backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainbr(code)
 
   Description
 
     TRAINBR is a network training function that updates the weight and
     bias values according to Levenberg-Marquardt optimization.  It
      minimizes a combination of squared errors and weights
      and, then determines the correct combination so as to produce a
      network which generalizes well.  The process is called Bayesian
      regularization.
 
     TRAINBR(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
             TR.mu - Adaptive mu value.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINLM's training parameters,
     shown here with their default values:
       net.trainParam.epochs     100  Maximum number of epochs to train
       net.trainParam.goal         0  Performance goal
       net.trainParam.mu       0.005  Marquardt adjustment parameter
       net.trainParam.mu_dec     0.1  Decrease factor for mu
       net.trainParam.mu_inc      10  Increase factor for mu
       net.trainParam.mu_max   1e-10  Maximum value for mu
       net.trainParam.max_fail     5  Maximum validation failures
       net.trainParam.mem_reduc    1  Factor to use for memory/speed trade off.
       net.trainParam.min_grad 1e-10  Minimum performance gradient
       net.trainParam.show        25  Epochs between displays (NaN for no displays)
       net.trainParam.time       inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINBR(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINBR with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINBR:
     1) Set NET.trainFcn to 'trainlm'.
        This will set NET.trainParam to TRAINBR's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINBR.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
    Example
 
      Here is a problem consisting of inputs p and targets t that we would
      like to solve with a network.  It involves fitting a noisy sine wave.
 
        p = [-1:.05:1];
        t = sin(2*pi*p)+0.1*randn(size(p));
 
      Here a two-layer feed-forward network is created.  The network's
      input ranges from [-1 to 1].  The first layer has 20 TANSIG
      neurons, and the second layer has one PURELIN neuron.  The TRAINBR
      network training function is to be used.  The plot of the
      resulting network output should show a smooth response, without
      overfitting.
 
        % Create a Network
        net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
 
        % Train and Test the Network
        net.trainParam.epochs = 50;
        net.trainParam.show = 10;
        net = train(net,p,t);
        a = sim(net,p)
        figure
        plot(p,a,p,t,'+')
 
   Algorithm
 
     TRAINBR can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Bayesian regularization minimizes a linear combination of squared
      errors and weights.  It also modifies the linear combination
      so that at the end of training the resulting network has good
      generalization qualities.
      See MacKay (Neural Computation, vol. 4, no. 3, 1992, pp. 415-447)
      and Foresee and Hagan (Proceedings of the International Joint
      Conference on Neural Networks, June, 1997) for more detailed
      discussions of Bayesian regularization.
 
      This Bayesian regularization takes place within the Levenberg-Marquardt
      algorithm. Backpropagation is used to calculate the Jacobian jX of
     performance PERF with respect to the weight and bias variables X. 
     Each variable is adjusted according to Levenberg-Marquardt,
 
       jj = jX * jX
       je = jX * E
       dX = -(jj+I*mu) \ je
 
     where E is all errors and I is the identity matrix.
 
     The adaptive value MU is increased by MU_INC until the change shown above
     results in a reduced performance value.  The change is then made to
     the network and mu is decreased by MU_DEC.
 
     The parameter MEM_REDUC indicates how to use memory and speed to
     calculate the Jacobian jX.  If MEM_REDUC is 1, then TRAINLM runs
     the fastest, but can require a lot of memory. Increasing MEM_REDUC
     to 2 cuts some of the memory required by a factor of two, but
     slows TRAINLM somewhat.  Higher values continue to decrease the
     amount of memory needed and increase the training times.
 
     Training stops when any of these conditions occur:
 
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) MU exceeds MU_MAX.
     6) Validation performance has increase more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINRP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINCGP,
            TRAINBFG.
 
    References
 
      MacKay, Neural Computation, vol. 4, no. 3, 1992, pp. 415-447.
 
      Foresee and Hagan, Proceedings of the International Joint 
      Conference on Neural Networks, June, 1997.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:52

Size:

15606 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcjejj.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>plotbr.m
ApplicationRoot>WavixIV>neural501>setx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainc.m

(back to table of contents)
 TRAINC Cyclical order incremental training w/learning functions.
 
   Syntax
   
     [net,tr,Ac,El] = trainc(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainc(code)
 
   Description
 
     TRAINC is not called directly.  Instead it is called by TRAIN for
     network's whose NET.trainFcn property is set to 'trainc'.
 
     TRAINC trains a network with weight and bias learning rules with
     incremental updates after each presentation of an input.  Inputs
     are presented in cyclic order.
 
     TRAINC(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed inputs.
       Tl  - Layer targets.
       Ai  - Initial input conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Ignored.
       TV  - Ignored.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
       Ac  - Collective layer outputs.
       El  - Layer errors.
 
     Training occurs according to the TRAINC's training parameters
     shown here with their default values:
       net.trainParam.epochs  100  Maximum number of epochs to train
       net.trainParam.goal      0  Performance goal
       net.trainParam.show     25  Epochs between displays (NaN for no displays)
       net.trainParam.time    inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element Pd{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix or [].
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     TRAINC does not implement validation or test vectors, so arguments
     VV and TV are ignored.
 
     TRAINC(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINC by calling
     NEWP.
 
     To prepare a custom network to be trained with TRAINC:
     1) Set NET.trainFcn to 'trainc'.
        (This will set NET.trainParam to TRAINC default parameters.)
     2) Set each NET.inputWeights{i,j}.learnFcn to a learning function.
        Set each NET.layerWeights{i,j}.learnFcn to a learning function.
        Set each NET.biases{i}.learnFcn to a learning function.
        (Weight and bias learning parameters will automatically be
        set to default values for the given learning function.)
 
     To train the network:
     1) Set NET.trainParam properties to desired values.
     2) Set weight and bias learning parameters to desired values.
     3) Call TRAIN.
 
     See NEWP for training examples.
 
   Algorithm
 
     For each epoch, each vector (or sequence) is presented in order
     to the network with the weight and bias values updated accordingly
     after each individual presentation.
 
     Training stops when any of these conditions are met:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) Performance has been minimized to the GOAL.
     3) The maximum amount of TIME has been exceeded.
 
   See also NEWP, NEWLIN, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:54

Size:

10314 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traincgb.m

(back to table of contents)
 TRAINCGB Conjugate gradient backpropagation with Powell-Beale restarts.
 
   Syntax
   
     [net,tr,Ac,El] = traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traincgb(code)
 
   Description
 
     TRAINCGB is a network training function that updates weight and
     bias values according to the conjugate gradient backpropagation
      with Powell-Beale restarts.
 
   TRAINCGB(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINCGB's training parameters,
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
        net.trainParam.searchFcn 'srchcha'  Name of line search routine to use.
 
    Parameters related to line search methods (not all used for all methods):
       net.trainParam.scal_tol         20  Divide into delta to determine tolerance for linear search.
       net.trainParam.alpha         0.001  Scale factor which determines sufficient reduction in perf.
       net.trainParam.beta            0.1  Scale factor which determines sufficiently large step size.
       net.trainParam.delta          0.01  Initial step size in interval location step.
       net.trainParam.gama            0.1  Parameter to avoid small reductions in performance. Usually set
                                            to 0.1. (See use in SRCH_CHA.)
       net.trainParam.low_lim         0.1  Lower limit on change in step size.
       net.trainParam.up_lim          0.5  Upper limit on change in step size.
       net.trainParam.maxstep         100  Maximum step length.
       net.trainParam.minstep      1.0e-6  Minimum step length.
       net.trainParam.bmax             26  Maximum step size.
 
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINCGB(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINCGB with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGB:
     1) Set NET.trainFcn to 'traincgb'.
        This will set NET.trainParam to TRAINCGB's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINCGB.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGB
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgb');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINCGB can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
        X = X + a*dX;
 
      where dX is the search direction.  The parameter a is selected
      to minimize the performance along the search direction.  The line
      search function searchFcn is used to locate the minimum point.
      The first search direction is the negative of the gradient of performance.
      In succeeding iterations the search direction is computed from the new
      gradient and the previous search direction according to the
      formula:
 
        dX = -gX + dX_old*Z;
 
      where gX is the gradient. The parameter Z can be computed in several 
      different ways.  The Powell-Beale variation of conjugate gradient
      is distinguished by two features.  First, the algorithm uses a test
      to determine when to reset the search direction to the negative of
      the gradient.  Second, the search direction is computed from the
      negative gradient, the previous search direction, and the last
      search direction before the previous reset.
     See Powell, Mathematical Programming, Vol. 12 (1977) pp. 241-254, for
      a more detailed discussion of the algorithm.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINCGP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINOSS,
            TRAINBFG.
 
    References
 
      Powell, Mathematical Programming, Vol. 12 (1977) pp. 241-254

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:54

Size:

16282 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traincgf.m

(back to table of contents)
 TRAINCGF Conjugate gradient backpropagation with Fletcher-Reeves updates.
 
   Syntax
   
     [net,tr,Ac,El] = traincgf(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traincgf(code)
 
   Description
 
     TRAINCGF is a network training function that updates weight and
     bias values according to the conjugate gradient backpropagation
      with Fletcher-Reeves updates.
 
   TRAINCGF(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINCGF's training parameters,
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
        net.trainParam.searchFcn 'srchcha'  Name of line search routine to use.
 
    Parameters related to line search methods (not all used for all methods):
       net.trainParam.scal_tol         20  Divide into delta to determine tolerance for linear search.
       net.trainParam.alpha         0.001  Scale factor which determines sufficient reduction in perf.
       net.trainParam.beta            0.1  Scale factor which determines sufficiently large step size.
       net.trainParam.delta          0.01  Initial step size in interval location step.
       net.trainParam.gama            0.1  Parameter to avoid small reductions in performance. Usually set
                                            to 0.1. (See use in SRCH_CHA.)
       net.trainParam.low_lim         0.1  Lower limit on change in step size.
       net.trainParam.up_lim          0.5  Upper limit on change in step size.
       net.trainParam.maxstep         100  Maximum step length.
       net.trainParam.minstep      1.0e-6  Minimum step length.
       net.trainParam.bmax             26  Maximum step size.
 
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINCGF(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINCGF with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGF:
     1) Set NET.trainFcn to 'traincgf'.
        This will set NET.trainParam to TRAINCGF's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINCGF.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGF
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINCGF can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
        X = X + a*dX;
 
      where dX is the search direction.  The parameter a is selected
      to minimize the performance along the search direction.  The line
      search function searchFcn is used to locate the minimum point.
      The first search direction is the negative of the gradient of performance.
      In succeeding iterations the search direction is computed from the new
      gradient and the previous search direction, according to the
      formula:
 
        dX = -gX + dX_old*Z;
 
      where gX is the gradient. The parameter Z can be computed in several 
      different ways.  For the Fletcher-Reeves variation of conjugate gradient
      it is computed according to
 
       Z=normnew_sqr/norm_sqr;
 
      where norm_sqr is the norm square of the previous gradient and
      normnew_sqr is the norm square of the current gradient.
     See page 78 of Scales (Introduction to Non-Linear Optimization 1985) for
      a more detailed discussion of the algorithm.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINCGP, TRAINCGB, TRAINSCG, TRAINOSS,
            TRAINBFG.
 
    References
 
      Scales, Introduction to Non-Linear Optimization, 1985.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:56

Size:

15428 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traincgp.m

(back to table of contents)
 TRAINCGP Conjugate gradient backpropagation with Polak-Ribiere updates.
 
   Syntax
   
     [net,tr,Ac,El] = traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traincgp(code)
 
   Description
 
     TRAINCGP is a network training function that updates weight and
     bias values according to the conjugate gradient backpropagation
      with Polak-Ribiere updates.
 
   TRAINCGP(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINCGP's training parameters,
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
        net.trainParam.searchFcn 'srchcha'  Name of line search routine to use.
 
    Parameters related to line search methods (not all used for all methods):
       net.trainParam.scal_tol         20  Divide into delta to determine tolerance for linear search.
       net.trainParam.alpha         0.001  Scale factor which determines sufficient reduction in perf.
       net.trainParam.beta            0.1  Scale factor which determines sufficiently large step size.
       net.trainParam.delta          0.01  Initial step size in interval location step.
       net.trainParam.gama            0.1  Parameter to avoid small reductions in performance. Usually set
                                            to 0.1. (See use in SRCH_CHA.)
       net.trainParam.low_lim         0.1  Lower limit on change in step size.
       net.trainParam.up_lim          0.5  Upper limit on change in step size.
       net.trainParam.maxstep         100  Maximum step length.
       net.trainParam.minstep      1.0e-6  Minimum step length.
       net.trainParam.bmax             26  Maximum step size.
 
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINCGP(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINCGP with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINCGP:
     1) Set NET.trainFcn to 'traincgp'.
        This will set NET.trainParam to TRAINCGP's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINCGP.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINCGP
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'traincgp');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINCGP can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
        X = X + a*dX;
 
      where dX is the search direction.  The parameter a is selected
      to minimize the performance along the search direction.  The line
      search function searchFcn is used to locate the minimum point.
      The first search direction is the negative of the gradient of performance.
      In succeeding iterations the search direction is computed from the new
      gradient and the previous search direction according to the
      formula:
 
        dX = -gX + dX_old*Z;
 
      where gX is the gradient. The parameter Z can be computed in several 
      different ways.  For the Polak-Ribiere variation of conjugate gradient
      it is computed according to:
 
       Z = ((gX - gX_old)'*gX)/norm_sqr;
 
      where norm_sqr is the norm square of the previous gradient and
      gX_old is the gradient on the previous iteration.
     See page 78 of Scales (Introduction to Non-Linear Optimization 1985) for
      a more detailed discussion of the algorithm.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINRP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINOSS,
            TRAINBFG.
 
    References
 
      Scales, Introduction to Non-Linear Optimization, 1985.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:56

Size:

15429 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traingd.m

(back to table of contents)
 TRAINGD Gradient descent backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = traingd(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traingd(code)
 
   Description
 
     TRAINGD is a network training function that updates weight and
     bias values according to gradient descent.
 
     TRAINGD(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns:
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINGD's training parameters
     shown here with their default values:
       net.trainParam.epochs      10  Maximum number of epochs to train
       net.trainParam.goal         0  Performance goal
       net.trainParam.lr        0.01  Learning rate
       net.trainParam.max_fail     5  Maximum validation failures
       net.trainParam.min_grad 1e-10  Minimum performance gradient
       net.trainParam.show        25  Epochs between displays (NaN for no displays)
       net.trainParam.time       inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINGD(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINGD with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINGD:
     1) Set NET.trainFcn to 'traingd'.
        This will set NET.trainParam to TRAINGD's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINGD.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
   Algorithm
 
     TRAINGD can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to gradient descent:
 
       dX = lr * dperf/dX
 
     Training stops when any of these conditions occurs:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:58

Size:

9327 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traingda.m

(back to table of contents)
 TRAINGDA Gradient descent with adaptive lr backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = traingda(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traingda(code)
 
   Description
 
     TRAINGDA is a network training function that updates weight and
     bias values according to gradient descent with adaptive
     learning rate.
 
     TRAINGDA(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
             TR.lr    - Adaptive learning rate.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINGDA's training parameters,
     shown here with their default values:
       net.trainParam.epochs         10  Maximum number of epochs to train
       net.trainParam.goal            0  Performance goal
       net.trainParam.lr           0.01  Learning rate
       net.trainParam.lr_inc       1.05  Ratio to increase learning rate
       net.trainParam.lr_dec        0.7  Ratio to decrease learning rate
       net.trainParam.max_fail        5  Maximum validation failures
       net.trainParam.max_perf_inc 1.04  Maximum performance increase
       net.trainParam.min_grad    1e-10  Minimum performance gradient
       net.trainParam.show           25  Epochs between displays (NaN for no displays)
       net.trainParam.time          inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINGDA(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINGDA with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINGDA:
     1) Set NET.trainFcn to 'traingda'.
        This will set NET.trainParam to TRAINGDA's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINGDA.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
   Algorithm
 
     TRAINGDA can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate derivatives of performance
     DPERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to gradient descent:
 
       dX = lr*dperf/dX
 
     Each of epoch, if performance decreases toward the goal, then
     the learning rate is increased by the factor lr_inc.  If
     performance increases by more than the factor max_perf_inc,
     the learning rate is adjusted by the factor lr_dec and the
     change, which increased the performance, is not made.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGD, TRAINGDM, TRAINGDX, TRAINLM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:20:58

Size:

11173 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traingdm.m

(back to table of contents)
 TRAINGDM Gradient descent with momentum backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = traingdm(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traingdm(code)
 
   Description
 
     TRAINGDM is a network training function that updates weight and
     bias values according to gradient descent with momentum.
 
     TRAINGDM(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs:
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns:
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINGDM's training parameters
     shown here with their default values:
       net.trainParam.epochs      10  Maximum number of epochs to train
       net.trainParam.goal         0  Performance goal
       net.trainParam.lr        0.01  Learning rate
       net.trainParam.max_fail     5  Maximum validation failures
       net.trainParam.mc         0.9  Momentum constant.
       net.trainParam.min_grad 1e-10  Minimum performance gradient
       net.trainParam.show        25  Epochs between displays (NaN for no displays)
       net.trainParam.time       inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINGDM(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINGDM with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINGDM:
     1) Set NET.trainFcn to 'traingdm'.
        This will set NET.trainParam to TRAINGDM's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINGDM.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
   Algorithm
 
     TRAINGDM can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to gradient descent with
     momentum,
 
       dX = mc*dXprev + lr*(1-mc)*dperf/dX
 
     where dXprev is the previous change to the weight or bias.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increase more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGD, TRAINGDA, TRAINGDX, TRAINLM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:00

Size:

10046 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>traingdx.m

(back to table of contents)
 TRAINGDX Gradient descent w/momentum & adaptive lr backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = traingdx(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = traingdx(code)
 
   Description
 
     TRAINGDX is a network training function that updates weight and
     bias values according to gradient descent momentum and an
     adaptive learning rate.
 
     TRAINGDX(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Empty matrix [] or structure of validation vectors.
       TV  - Empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
             TR.lr    - Adaptive learning rate.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINGDX's training parameters
     shown here with their default values:
       net.trainParam.epochs         10  Maximum number of epochs to train
       net.trainParam.goal            0  Performance goal
       net.trainParam.lr           0.01  Learning rate
       net.trainParam.lr_inc       1.05  Ratio to increase learning rate
       net.trainParam.lr_dec        0.7  Ratio to decrease learning rate
       net.trainParam.max_fail        5  Maximum validation failures
       net.trainParam.max_perf_inc 1.04  Maximum performance increase
       net.trainParam.mc            0.9  Momentum constant.
       net.trainParam.min_grad    1e-10  Minimum performance gradient
       net.trainParam.show           25  Epochs between displays (NaN for no displays)
       net.trainParam.time          inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINGDX(CODE) return useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINGDX with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINGDX:
     1) Set NET.trainFcn to 'traingdx'.
        This will set NET.trainParam to TRAINGDX's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINGDX.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
   Algorithm
 
     TRAINGDX can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the gradient descent
     with momentum.
 
       dX = mc*dXprev + lr*mc*dperf/dX
 
     where dXprev is the previous change to the weight or bias.
 
     For each epoch, if performance decreases toward the goal, then
     the learning rate is increased by the factor lr_inc.  If
     performance increases by more than the factor max_perf_inc,
     the learning rate is adjusted by the factor lr_dec and the
     change, which increased the performance, is not made.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increase more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGD, TRAINGDM, TRAINGDA, TRAINLM.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:00

Size:

11693 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainlm.m

(back to table of contents)
 TRAINLM Levenberg-Marquardt backpropagation.
 
   Syntax
   
     [net,tr] = trainlm(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainlm(code)
 
   Description
 
     TRAINLM is a network training function that updates weight and
     bias values according to Levenberg-Marquardt optimization.
 
     TRAINLM(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
             TR.mu    - Adaptive mu value.
 
     Training occurs according to the TRAINLM's training parameters
     shown here with their default values:
       net.trainParam.epochs     100  Maximum number of epochs to train
       net.trainParam.goal         0  Performance goal
       net.trainParam.max_fail     5  Maximum validation failures
       net.trainParam.mem_reduc    1  Factor to use for memory/speed trade off.
       net.trainParam.min_grad 1e-10  Minimum performance gradient
       net.trainParam.mu       0.001  Initial Mu
       net.trainParam.mu_dec     0.1  Mu decrease factor
       net.trainParam.mu_inc      10  Mu increase factor
       net.trainParam.mu_max    1e10  Maximum Mu
       net.trainParam.show        25  Epochs between displays (NaN for no displays)
       net.trainParam.time       inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV or TV is not [], it must be a structure of vectors:
       VV.PD, TV.PD - Validation/test delayed inputs.
       VV.Tl, TV.Tl - Validation/test layer targets.
       VV.Ai, TV.Ai - Validation/test initial input conditions.
       VV.Q,  TV.Q  - Validation/test batch size.
       VV.TS, TV.TS - Validation/test time steps.
     Validation vectors are used to stop training early if the network
     performance on the validation vectors fails to improve or remains
     the same for MAX_FAIL epochs in a row.  Test vectors are used as
     a further check that the network is generalizing well, but do not
     have any effect on training.
 
     TRAINLM(CODE) return useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINLM with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINLM:
     1) Set NET.trainFcn to 'trainlm'.
        This will set NET.trainParam to TRAINLM's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINLM.
 
     See NEWFF, NEWCF, and NEWELM for examples.
 
   Algorithm
 
     TRAINLM can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate the Jacobian jX of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to Levenberg-Marquardt,
 
       jj = jX * jX
       je = jX * E
       dX = -(jj+I*mu) \ je
 
     where E is all errors and I is the identity matrix.
 
     The adaptive value MU is increased by MU_INC until the change above
     results in a reduced performance value.  The change is then made to
     the network and mu is decreased by MU_DEC.
 
     The parameter MEM_REDUC indicates how to use memory and speed to
     calculate the Jacobian jX.  If MEM_REDUC is 1, then TRAINLM runs
     the fastest, but can require a lot of memory. Increasing MEM_REDUC
     to 2, cuts some of the memory required by a factor of two, but
     slows TRAINLM somewhat.  Higher values continue to decrease the
     amount of memory needed and increase training times.
 
     Training stops when any of these conditions occurs:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) MU exceeds MU_MAX.
     6) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGD, TRAINGDM, TRAINGDA, TRAINGDX.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

14-Nov-2005 19:18:20

Size:

14182 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcjejj.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainoss.m

(back to table of contents)
 TRAINOSS One step secant backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainoss(code)
 
   Description
 
     TRAINOSS is a network training function that updates weight and
     bias values according to the one step secant method.
 
   TRAINOSS(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINOSS's training parameters,
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
        net.trainParam.searchFcn 'srchcha'  Name of line search routine to use.
 
    Parameters related to line search methods (not all used for all methods):
       net.trainParam.scale_tol         20  Divide into delta to determine tolerance for linear search.
       net.trainParam.alpha         0.001  Scale factor which determines sufficient reduction in perf.
       net.trainParam.beta            0.1  Scale factor which determines sufficiently large step size.
       net.trainParam.delta          0.01  Initial step size in interval location step.
       net.trainParam.gama            0.1  Parameter to avoid small reductions in performance. Usually set
                                            to 0.1. (See use in SRCH_CHA.)
       net.trainParam.low_lim         0.1  Lower limit on change in step size.
       net.trainParam.up_lim          0.5  Upper limit on change in step size.
       net.trainParam.maxstep         100  Maximum step length.
       net.trainParam.minstep      1.0e-6  Minimum step length.
       net.trainParam.bmax             26  Maximum step size.
 
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINOSS(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINOSS with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINOSS:
     1) Set NET.trainFcn to 'trainoss'.
        This will set NET.trainParam to TRAINCGP's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINOSS.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINOSS
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'trainoss');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINOSS can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
        X = X + a*dX;
 
      where dX is the search direction.  The parameter a is selected
      to minimize the performance along the search direction.  The line
      search function searchFcn is used to locate the minimum point.
      The first search direction is the negative of the gradient of performance.
      In succeeding iterations the search direction is computed from the new
      gradient and the previous steps and gradients according to the following
      formula:
 
        dX = -gX + Ac*X_step + Bc*dgX;
 
      where gX is the gradient, X_step is the change in the weights on the
      previous iteration, and dgX is the change in the gradient from the
      last iteration. 
      See Battiti (Neural Computation, vol. 4, 1992, pp. 141-166) for
      a more detailed discussion of the one step secant algorithm.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINRP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINCGP,
            TRAINBFG.
 
    References
 
      Battiti, Neural Computation, vol. 4, 1992, pp. 141-166.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:02

Size:

14962 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainr.m

(back to table of contents)
 TRAINR Random order incremental training w/learning functions.
 
   Syntax
   
     [net,tr,Ac,El] = trainr(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainr(code)
 
   Description
 
     TRAINR is not called directly.  Instead it is called by TRAIN for
     network's whose NET.trainFcn property is set to 'trainr'.
 
     TRAINR trains a network with weight and bias learning rules with
     incremental updates after each presentation of an input.  Inputs
     are presented in random order.
 
     TRAINR(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed inputs.
       Tl  - Layer targets.
       Ai  - Initial input conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Ignored.
       TV  - Ignored.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf  - Training performance.
       Ac  - Collective layer outputs.
       El  - Layer errors.
 
     Training occurs according to the TRAINR's training parameters
     shown here with their default values:
       net.trainParam.epochs  100  Maximum number of epochs to train
       net.trainParam.goal      0  Performance goal
       net.trainParam.show     25  Epochs between displays (NaN for no displays)
       net.trainParam.time    inf  Maximum time to train in seconds
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element Pd{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix or [].
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     TRAINR does not implement validation or test vectors, so arguments
     VV and TV are ignored.
 
     TRAINR(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINR by calling
     NEWC or NEWSOM.
 
     To prepare a custom network to be trained with TRAINR:
     1) Set NET.trainFcn to 'trainr'.
        (This will set NET.trainParam to TRAINR's default parameters.)
     2) Set each NET.inputWeights{i,j}.learnFcn to a learning function.
        Set each NET.layerWeights{i,j}.learnFcn to a learning function.
        Set each NET.biases{i}.learnFcn to a learning function.
        (Weight and bias learning parameters will automatically be
        set to default values for the given learning function.)
 
     To train the network:
     1) Set NET.trainParam properties to desired values.
     2) Set weight and bias learning parameters to desired values.
     3) Call TRAIN.
 
     See NEWC and NEWSOM for training examples.
 
   Algorithm
 
     For each epoch, all training vectors (or sequences) are each
     presented once in a different random order with the network and
     weight and bias values updated accordingly after each individual
     presentation.
 
     Training stops when any of these conditions are met:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) Performance has been minimized to the GOAL.
     3) The maximum amount of TIME has been exceeded.
 
   See also NEWP, NEWLIN, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:02

Size:

10203 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainrp.m

(back to table of contents)
 TRAINRP RPROP backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainrp(code)
 
   Description
 
     TRAINRP is a network training function that updates weight and
     bias values according to the resilient backpropagation algorithm
      (RPROP).
 
   TRAINRP(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINRP's training parameters
     shown here with their default values:
       net.trainParam.epochs     100  Maximum number of epochs to train
       net.trainParam.show        25  Epochs between displays (NaN for no displays)
       net.trainParam.goal         0  Performance goal
       net.trainParam.time       inf  Maximum time to train in seconds
       net.trainParam.min_grad  1e-6  Minimum performance gradient
       net.trainParam.max_fail     5  Maximum validation failures
       net.trainParam.lr        0.01  Learning rate
       net.trainParam.delt_inc   1.2  Increment to weight change
       net.trainParam.delt_dec   0.5  Decrement to weight change
       net.trainParam.delta0    0.07  Initial weight change
       net.trainParam.deltamax  50.0  Maximum weight change
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINRP(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINRP with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINRP:
     1) Set NET.trainFcn to 'trainrp'.
        This will set NET.trainParam to TRAINRP's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINRP.
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINRP
     network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINRP can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
 
     Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.  Each
     variable is adjusted according to the following:
 
       dX = deltaX.*sign(gX);
 
      where the elements of deltaX are all initialized to delta0 and
      gX is the gradient.  At each iteration the elements of deltaX
      are modified.  If an element of gX changes sign from one 
      iteration to the next, then the corresponding element of
      deltaX is decreased by delta_dec.  If an element of gX 
      maintains the same sign from one iteration to the next,
      then the corresponding element of deltaX is increased by
      delta_inc.  See Reidmiller, Proceedings of the IEEE Int. Conf. 
       on NN (ICNN) San Francisco, 1993, pp. 586-591.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINCGP, TRAINCGF, TRAINCGB, TRAINSCG, TRAINOSS,
            TRAINBFG.
 
    References
 
      Reidmiller, Proceedings of the IEEE Int. Conf. on NN (ICNN) 
      San Francisco, 1993, pp. 586-591.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:04

Size:

12500 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trains.m

(back to table of contents)
 TRAINS Sequential order incremental training w/learning functions.
 
   Syntax
 
     [net,TR,Ac,El] = trains(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trains(code)
 
   Description
 
     TRAINS is not called directly.  Instead it is called by TRAIN for
     network's whose NET.trainFcn property is set to 'trains'.
 
     TRAINS trains a network with weight and bias learning rules with
     sequential updates. The sequence of inputs is presented to the network
     with updates occuring after each time step.
 
     This incremental training algorithm is commonly used for adaptive
     applications.
 
     TRAINS takes these inputs:
       NET - Neural network.
       Pd  - Delayed inputs.
       Tl  - Layer targets.
       Ai  - Initial input conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Ignored.
       TV  - Ignored.
     and after training the network with its weight and bias
     learning functions returns:
       NET - Updated network.
       TR  - Training record.
             TR.timesteps - Number of time steps.
             TR.perf - performance for each time step.
       Ac  - Collective layer outputs.
       El  - Layer errors.
 
     Training occurs according to the TRAINS' training parameter
     shown here with its default value:
       net.trainParam.passes    1  Number of times to present sequence
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a ZijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is an VixQ matrix or [].
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
       Ac - Nlx(LD+TS) cell array, each element Ac{i,k} is an SixQ matrix.
       El - NlxTS cell array, each element El{i,k} is an SixQ matrix or [].
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Zij = Ri * length(net.inputWeights{i,j}.delays)
 
     TRAINS(CODE) return useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINS for adapting
     by calling NEWP or NEWLIN.
 
     To prepare a custom network to adapt with TRAINS:
     1) Set NET.adaptFcn to 'trains'.
        (This will set NET.adaptParam to TRAINS' default parameters.)
     2) Set each NET.inputWeights{i,j}.learnFcn to a learning function.
        Set each NET.layerWeights{i,j}.learnFcn to a learning function.
        Set each NET.biases{i}.learnFcn to a learning function.
        (Weight and bias learning parameters will automatically be
        set to default values for the given learning function.)
 
     To allow the network to adapt:
     1) Set weight and bias learning parameters to desired values.
     2) Call ADAPT.
 
     See NEWP and NEWLIN for adaption examples.
 
   Algorithm
 
     Each weight and bias is updated according to its learning function
     after each time step in the input sequence.
 
   See also NEWP, NEWLIN, TRAIN, TRAINB, TRAINC, TRAINR.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:04

Size:

6819 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calca1.m
ApplicationRoot>WavixIV>neural501>calce1.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>getx.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)
 TRAINSCG Scaled conjugate gradient backpropagation.
 
   Syntax
   
     [net,tr,Ac,El] = trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV)
     info = trainscg(code)
 
   Description
 
     TRAINSCG is a network training function that updates weight and
     bias values according to the scaled conjugate gradient method.
 
   TRAINSCG(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,
       NET - Neural network.
       Pd  - Delayed input vectors.
       Tl  - Layer target vectors.
       Ai  - Initial input delay conditions.
       Q   - Batch size.
       TS  - Time steps.
       VV  - Either empty matrix [] or structure of validation vectors.
       TV  - Either empty matrix [] or structure of test vectors.
     and returns,
       NET - Trained network.
       TR  - Training record of various values over each epoch:
             TR.epoch - Epoch number.
             TR.perf - Training performance.
             TR.vperf - Validation performance.
             TR.tperf - Test performance.
       Ac  - Collective layer outputs for last epoch.
       El  - Layer errors for last epoch.
 
     Training occurs according to the TRAINSCG's training parameters
     shown here with their default values:
       net.trainParam.epochs          100  Maximum number of epochs to train
       net.trainParam.show             25  Epochs between displays (NaN for no displays)
       net.trainParam.goal              0  Performance goal
       net.trainParam.time            inf  Maximum time to train in seconds
       net.trainParam.min_grad       1e-6  Minimum performance gradient
       net.trainParam.max_fail          5  Maximum validation failures
       net.trainParam.sigma        5.0e-5  Determines change in weight for second derivative approximation.
       net.trainParam.lambda       5.0e-7  Parameter for regulating the indefiniteness of the Hessian.
 
     Dimensions for these variables are:
       Pd - NoxNixTS cell array, each element P{i,j,ts} is a DijxQ matrix.
       Tl - NlxTS cell array, each element P{i,ts} is a VixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
     Where
       Ni = net.numInputs
     Nl = net.numLayers
     LD = net.numLayerDelays
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
       Dij = Ri * length(net.inputWeights{i,j}.delays)
 
     If VV is not [], it must be a structure of validation vectors,
       VV.PD - Validation delayed inputs.
       VV.Tl - Validation layer targets.
       VV.Ai - Validation initial input conditions.
       VV.Q  - Validation batch size.
       VV.TS - Validation time steps.
     which is used to stop training early if the network performance
     on the validation vectors fails to improve or remains the same
     for MAX_FAIL epochs in a row.
 
     If TV is not [], it must be a structure of validation vectors,
       TV.PD - Validation delayed inputs.
       TV.Tl - Validation layer targets.
       TV.Ai - Validation initial input conditions.
       TV.Q  - Validation batch size.
       TV.TS - Validation time steps.
     which is used to test the generalization capability of the
      trained network.
 
     TRAINSCG(CODE) returns useful information for each CODE string:
       'pnames'    - Names of training parameters.
       'pdefaults' - Default training parameters.
 
   Network Use
 
     You can create a standard network that uses TRAINSCG with
     NEWFF, NEWCF, or NEWELM.
 
     To prepare a custom network to be trained with TRAINSCG:
     1) Set NET.trainFcn to 'trainscg'.
        This will set NET.trainParam to TRAINSCG's default parameters.
     2) Set NET.trainParam properties to desired values.
 
     In either case, calling TRAIN with the resulting network will
     train the network with TRAINSCG.
 
 
   Examples
 
     Here is a problem consisting of inputs P and targets T that we would
     like to solve with a network.
 
       p = [0 1 2 3 4 5];
       t = [0 0 0 1 1 1];
 
     Here a two-layer feed-forward network is created.  The network's
     input ranges from [0 to 10].  The first layer has two TANSIG
     neurons, and the second layer has one LOGSIG neuron.  The TRAINSCG
      network training function is to be used.
 
       % Create and Test a Network
       net = newff([0 5],[2 1],{'tansig','logsig'},'trainscg');
       a = sim(net,p)
 
       % Train and Retest the Network
       net.trainParam.epochs = 50;
       net.trainParam.show = 10;
       net.trainParam.goal = 0.1;
       net = train(net,p,t);
       a = sim(net,p)
 
     See NEWFF, NEWCF, and NEWELM for other examples.
 
   Algorithm
 
     TRAINSCG can train any network as long as its weight, net input,
     and transfer functions have derivative functions.
      Backpropagation is used to calculate derivatives of performance
     PERF with respect to the weight and bias variables X.
 
     The scaled conjugate gradient algorithm is based on conjugate 
      directions, as in TRAINCGP, TRAINCGF and TRAINCGB, but this 
      algorithm does not perform a line search at each iteration.
     See Moller (Neural Networks, vol. 6, 1993, pp. 525-533) for a more
      detailed discussion of the scaled conjugate gradient algorithm.
 
     Training stops when any of these conditions occur:
     1) The maximum number of EPOCHS (repetitions) is reached.
     2) The maximum amount of TIME has been exceeded.
     3) Performance has been minimized to the GOAL.
     4) The performance gradient falls below MINGRAD.
     5) Validation performance has increased more than MAX_FAIL times
        since the last time it decreased (when using validation).
 
   See also NEWFF, NEWCF, TRAINGDM, TRAINGDA, TRAINGDX, TRAINLM,
            TRAINRP, TRAINCGF, TRAINCGB, TRAINBFG, TRAINCGP,
            TRAINOSS.
 
    References
 
      Moller, Neural Networks, vol. 6, 1993, pp. 525-533.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:06

Size:

13408 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>tribas.m

(back to table of contents)
 TRIBAS Triangular basis transfer function.
 	
 	Syntax
 
 	  A = tribas(N,FP)
    dA_dN = tribas('dn',N,A,FP)
 	  INFO = tribas(CODE)
 
 	Description
 	
 	  TRIBAS is a neural transfer function.  Transfer functions
 	  calculate a layer's output from its net input.
 
 	  TRIBAS(N,FP) takes N and optional function parameters,
 	    N - SxQ matrix of net input (column) vectors.
 	    FP - Struct of function parameters (ignored).
 	  and returns A, an SxQ matrix of the triangular basis function
    applied to each element of N.
 	
    TRIBAS('dn',N,A,FP) returns SxQ derivative of A w-respect to N.
    If A or FP are not supplied or are set to [], FP reverts to
    the default parameters, and A is calculated from N.
 
    TRIBAS('name') returns the name of this function.
    TRIBAS('output',FP) returns the [min max] output range.
    TRIBAS('active',FP) returns the [min max] active input range.
    TRIBAS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ.
    TRIBAS('fpnames') returns the names of the function parameters.
    TRIBAS('fpdefaults') returns the default function parameters.
 	
 	Examples
 
 	  Here we create a plot of the TRIBAS transfer function.
 	
 	    n = -5:0.1:5;
 	    a = tribas(n);
 	    plot(n,a)
 
 	  Here we assign this transfer function to layer i of a network.
 
      net.layers{i}.transferFcn = 'tribas';
 
 	Algorithm
 
 	    a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
                    = 0, otherwise
 
 	See also SIM, RADBAS.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:21:18

Size:

2641 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>boiler_transfer.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>updatenet.m

(back to table of contents)
 UPDATENET Creates a current network object from an old network structure.
 
 
   NET = UPDATE(S)
     S - Structure with fields of old neural network object.
   Returns
     NET - New neural network
 
   This function is caled by NETWORK/LOADOBJ to update old neural
   network objects when they are loaded from an M-file.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:22:38

Size:

3541 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>vec2ind.m

(back to table of contents)
 VEC2IND Transform vectors to indices.
 
   Syntax
 
     ind = vec2ind(vec)
 
   Description
 
     IND2VEC and VEC2IND allow indices to be represented
     either by themselves or as vectors containing a 1 in the
     row of the index they represent.
 
     VEC2IND(VEC) takes one argument,
       VEC - Matrix of vectors, each containing a single 1.
     and returns the indices of the 1's.
 
   Examples
 
     Here four vectors (containing only one 1 each) are defined
     and the indices of the 1's are found.
 
       vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
       ind = vec2ind(vec)
   
   See also IND2VEC.

Path:

ApplicationRoot\WavixIV\neural501

Last modified:

22-Dec-2005 12:19:24

Size:

811 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>adapt.m

(back to table of contents)
 ADAPT Allow a neural network to adapt.
 
   Syntax
 
     [net,Y,E,Pf,Af,tr] = adapt(NET,P,T,Pi,Ai)
 
   Description
 
     [NET,Y,E,Pf,Af,tr] = ADAPT(NET,P,T,Pi,Ai) takes,
       NET - Network.
       P   - Network inputs.
       T   - Network targets, default = zeros.
       Pi  - Initial input delay conditions, default = zeros.
       Ai  - Initial layer delay conditions, default = zeros.
     and returns the following after applying the adapt function
     NET.adaptFcn with the adaption parameters NET.adaptParam:
       NET - Updated network.
       Y   - Network outputs.
       E   - Network errors.
       Pf  - Final input delay conditions.
       Af  - Final layer delay conditions.
       TR  - Training record (epoch and perf).
 
     Note that T is optional and only needs to be used for networks
     that require targets.  Pi and Pf are also optional and need
     only to be used for networks that have input or layer delays.
 
     ADAPT's signal arguments can have two formats: cell array or matrix.
     
     The cell array format is easiest to describe.  It is most
     convenient to be used for networks with multiple inputs and outputs,
     and allows sequences of inputs to be presented:
       P  - NixTS cell array, each element P{i,ts} is an RixQ matrix.
       T  - NtxTS cell array, each element T{i,ts} is an VixQ matrix.
       Pi - NixID cell array, each element Pi{i,k} is an RixQ matrix.
       Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
       Y  - NOxTS cell array, each element Y{i,ts} is an UixQ matrix.
       E  - NtxTS cell array, each element E{i,ts} is an VixQ matrix.
       Pf - NixID cell array, each element Pf{i,k} is an RixQ matrix.
     Af - NlxLD cell array, each element Af{i,k} is an SixQ matrix.
     Where:
       Ni = net.numInputs
       Nl = net.numLayers
       No = net.numOutputs
       Nt = net.numTargets
       ID = net.numInputDelays
       LD = net.numLayerDelays
       TS = number of time steps
       Q  = batch size
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Ui = net.outputs{i}.size
       Vi = net.targets{i}.size
 
     The columns of Pi, Pf, Ai, and Af are ordered from oldest delay
     condition to most recent:
       Pi{i,k} = input i at time ts=k-ID.
       Pf{i,k} = input i at time ts=TS+k-ID.
       Ai{i,k} = layer output i at time ts=k-LD.
       Af{i,k} = layer output i at time ts=TS+k-LD.
 
     The matrix format can be used if only one time step is to be
     simulated (TS = 1).  It is convenient for network's with
      only one input and output, but can be used with networks that
      have more.
 
     Each matrix argument is found by storing the elements of
     the corresponding cell array argument into a single matrix:
       P  - (sum of Ri)xQ matrix
       T  - (sum of Vi)xQ matrix
       Pi - (sum of Ri)x(ID*Q) matrix.
       Ai - (sum of Si)x(LD*Q) matrix.
       Y  - (sum of Ui)xQ matrix.
       E  - (sum of Vi)xQ matrix
       Pf - (sum of Ri)x(ID*Q) matrix.
       Af - (sum of Si)x(LD*Q) matrix.
 
   Examples
 
     Here two sequences of 12 steps (where T1 is known to depend
     on P1) are used to define the operation of a filter.
 
       p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
       t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};
 
     Here NEWLIN is used to create a layer with an input range
     of [-1 1]), one neuron, input delays of 0 and 1, and a
     learning rate of 0.5. The linear layer is then simulated.
 
       net = newlin([-1 1],1,[0 1],0.5);
 
     Here the network adapts for one pass through the sequence.
     The network's mean squared error is displayed.  (Since this
     is the first call of ADAPT the default Pi is used.)
 
       [net,y,e,pf] = adapt(net,p1,t1);
       mse(e)
       
     Note the errors are quite large.  Here the network adapts
     to another 12 time steps (using the previous Pf as the
     new initial delay conditions.)
 
       p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
       t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
       [net,y,e,pf] = adapt(net,p2,t2,pf);
       mse(e)
 
     Here the network adapts through 100 passes through
     the entire sequence.
 
       p3 = [p1 p2];
       t3 = [t1 t2];
       net.adaptParam.passes = 100;
       [net,y,e] = adapt(net,p3,t3);
       mse(e)
 
     The error after 100 passes through the sequence is very
     small - the network has adapted to the relationship
     between the input and target signals.
 
   Algorithm
 
     ADAPT calls the function indicated by NET.adaptFcn, using the
     adaption parameter values indicated by NET.adaptParam.
 
     Given an input sequence with TS steps the network is
     updated as follows.  Each step in the sequence of  inputs is
     presented to the network one at a time.  The network's weight and
     bias values are updated after each step, before the next step in
     the sequence is presented. Thus the network is updated TS times.
 
   See also INIT, REVERT, SIM, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

17-Aug-2004 16:42:12

Size:

9120 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>calcpd.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>disp.m

(back to table of contents)
 DISP Display a neural network's properties.
 
   Syntax
 
     disp(net)
 
   Description
 
     DISP(NET) displays a network's properties.
 
   Examples
 
     Here a perceptron is created and displayed.
 
       net = newp([-1 1; 0 2],3);
       disp(net)
 
   See also DISPLAY, SIM, INIT, TRAIN, ADAPT

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

22-Dec-2005 12:18:46

Size:

5517 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>display.m

(back to table of contents)
 DISPLAY Display the name and properties of a neural network variable.
 
   Syntax
 
     display(net)
 
   Description
 
     DISPLAY(NET) displays a network variable's name and properties.
 
   Examples
 
     Here a perceptron variable is defined and displayed.
 
       net = newp([-1 1; 0 2],3);
       display(net)
 
     DISPLAY is automatically called as follows:
 
       net
 
   See also DISP, SIM, INIT, TRAIN, ADAPT

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

22-Dec-2005 12:18:48

Size:

700 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>gensim.m

(back to table of contents)
 GENSIM Generate a SIMULINK block to simulate a neural network.
 
   Syntax
 
     gensim(net,st)
 
   Description
 
     GENSIM(NET,ST) takes these inputs,
       NET - Neural network.
       ST  - Sample time (default = 1).
     and creates a SIMULINK system containing a block which
     simulates neural network NET with a sampling time of ST.
 
     If NET has no input or layer delays (NET.numInputDelays
     and NET.numLayerDelays are both 0) then you can use -1 for ST to
     get a continuously sampling network. 
 
   Example
 
     net = newff([0 1],[5 1]);
     gensim(net)

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

24-Mar-2004 14:42:58

Size:

20409 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>init.m

(back to table of contents)
 INIT Initialize a neural network.
 
   Syntax
 
     net = init(net)
 
   Description
 
     INIT(NET) returns neural network NET with weight and bias values
     updated according to the network initialization function, indicated
     by NET.initFcn, and the parameter values, indicated by NET.initParam.
 
   Examples
 
     Here a perceptron is created with a 2-element input (with ranges
     of 0 to 1, and -2 to 2) and 1 neuron.  Once it is created we can display
     the neuron's weights and bias.
 
       net = newp([0 1;-2 2],1);
       net.iw{1,1}
       net.b{1}
 
     Training the perceptron alters its weight and bias values.
 
       P = [0 1 0 1; 0 0 1 1];
       T = [0 0 0 1];
       net = train(net,P,T);
       net.iw{1,1}
       net.b{1}
 
     INIT reinitializes those weight and bias values.
 
       net = init(net);
       net.iw{1,1}
       net.b{1}
 
     The weights and biases are zeros again, which are the initial values
     used by perceptron networks (see NEWP). 
 
   Algorithm
 
     INIT calls NET.initFcn to initialize the weight and bias values
     according to the parameter values NET.initParam.
 
     Typically, NET.initFcn is set to 'initlay' which initializes each
     layer's weights and biases according to its NET.layers{i}.initFcn.
 
     Backpropagation networks have NET.layers{i}.initFcn set to 'initnw'
     which calculates the weight an bias values for layer i using the
     Nguyen-Widrow initialization method.
 
     Other networks have NET.layers{i}.initFcn set to 'initwb', which
     initializes each weight and bias with its own initialization function.
     The most common weight and bias initialization function is RANDS
     which generates random values between -1 and 1.
 
   See also REVERT, SIM, ADAPT, TRAIN, INITLAY, INITNW, INITWB, RANDS.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

14-Apr-2002 16:28:54

Size:

2647 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>loadobj.m

(back to table of contents)
 LOADOBJ Load a network object.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

14-Apr-2002 16:29:20

Size:

231 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>updatenet.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>network.m

(back to table of contents)
 NETWORK Create a custom neural network.
 
   Synopsis
 
     net = network
     net = network(numInputs,numLayers,biasConnect,inputConnect,
       layerConnect,outputConnect,targetConnect)
 
   Description
 
     NETWORK creates new custom networks.  It is used to create
     networks that are then customized by functions such as NEWP,
     NEWLIN, NEWFF, etc.
 
     NETWORK takes these optional arguments (shown with default values):
       numInputs     - Number of inputs, 0.
       numLayers     - Number of layers, 0.
       biasConnect   - numLayers-by-1 Boolean vector, zeros.
       inputConnect  - numLayers-by-numInputs Boolean matrix, zeros.
       layerConnect  - numLayers-by-numLayers Boolean matrix, zeros.
       outputConnect - 1-by-numLayers Boolean vector, zeros.
       targetConnect - 1-by-numLayers Boolean vector, zeros.
     and returns,
       NET           - New network with the given property values.
 
   Properties
 
     Architecture properties:
 
       net.numInputs: 0 or a positive integer.
         Number of inputs.
       net.numLayers: 0 or a positive integer.
         Number of layers.
       net.biasConnect: numLayer-by-1 Boolean vector.
         If net.biasConnect(i) is 1 then the layer i has a bias and
         net.biases{i} is a structure describing that bias.
       net.inputConnect: numLayer-by-numInputs Boolean vector.
         If net.inputConnect(i,j) is 1 then layer i has a weight coming from
         input j and net.inputWeights{i,j} is a structure describing that weight.
       net.layerConnect: numLayer-by-numLayers Boolean vector.
         If net.layerConnect(i,j) is 1 then layer i has a weight coming from
         layer j and net.layerWeights{i,j} is a structure describing that weight.
        net.outputConnect: 1-by-numLayers Boolean vector.
         If net.outputConnect(i) is 1 then the network has an output from
         layer i and net.outputs{i} is a structure describing that output.
        net.targetConnect: 1-by-numLayers Boolean vector.
         if net.targetConnect(i) is 1 then the network has a target from
         layer i and net.targets{i} is a structure describing that target.
       net.numOutputs: 0 or a positive integer. Read only.
         Number of network outputs according to net.outputConnect.
       net.numTargets: 0 or a positive integer. Read only.
         Number of targets according to net.targetConnect.
       net.numInputDelays: 0 or a positive integer. Read only.
         Maximum input delay according to all net.inputWeight{i,j}.delays.
       net.numLayerDelays: 0 or a positive number. Read only.
         Maximum layer delay according to all net.layerWeight{i,j}.delays.
 
   Subobject structure properties:
 
       net.inputs: numInputs-by-1 cell array.
         net.inputs{i} is a structure defining input i:
       net.layers: numLayers-by-1 cell array.
         net.layers{i} is a structure defining layer i:
        net.biases: numLayers-by-1 cell array.
         if net.biasConnect(i) is 1, then net.biases{i} is a structure
         defining the bias for layer i.
       net.inputWeights: numLayers-by-numInputs cell array.
         if net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a
         structure defining the weight to layer i from input j.
       net.layerWeights: numLayers-by-numLayers cell array.
         if net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a
         structure defining the weight to layer i from layer j.
       net.outputs: 1-by-numLayers cell array.
         if net.outputConnect(i) is 1, then net.outputs{i} is a structure
         defining the network output from layer i.
       net.targets: 1-by-numLayers cell array.
         if net.targetConnect(i) is 1, then net.targets{i} is a structure
         defining the network target to layer i.
 
     Function properties:
 
       net.adaptFcn: name of a network adaption function or ''.
       net.initFcn: name of a network initialization function or ''.
       net.performFcn: name of a network performance function or ''.
       net.trainFcn: name of a network training function or ''.
       net.gradientFcn: name of a network gradient function or ''.  ODJ
 
     Parameter properties:
 
       net.adaptParam: network adaption parameters.
       net.initParam: network initialization parameters.
       net.performParam: network performance parameters.
       net.trainParam: network training parameters.
       net.gradientParam: network gradient parameters.  ODJ
 
     Weight and bias value properties:
 
       net.IW: numLayers-by-numInputs cell array of input weight values.
       net.LW: numLayers-by-numLayers cell array of layer weight values.
       net.b: numLayers-by-1 cell array of bias values.
 
     Other properties:
 
       net.userdata: structure you can use to store useful values.
 
   Examples
 
     Here is how the code to create a network without any inputs and layers,
     and then set its number of inputs and layer to 1 and 2 respectively.
 
       net = network
       net.numInputs = 1
       net.numLayers = 2
 
     Here is the code to create the same network with one line of code.
 
       net = network(1,2)
 
     Here is the code to create a 1 input, 2 layer, feed-forward network.
     Only the first layer will have a bias.  An input weight will
     connect to layer 1 from input 1.  A layer weight will connect
     to layer 2 from layer 1.  Layer 2 will be a network output,
     and have a target.
 
       net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1],[0 1])
 
     We can then see the properties of subobjects as follows:
 
       net.inputs{1}
       net.layers{1}, net.layers{2}
       net.biases{1}
       net.inputWeights{1,1}, net.layerWeights{2,1}
       net.outputs{2}
       net.targets{2}
 
     We can get the weight matrices and bias vector as follows:
 
       net.iw{1,1}, net.iw{2,1}, net.b{1}
 
     We can alter the properties of any of these subobjects.  Here
     we change the transfer functions of both layers:
 
       net.layers{1}.transferFcn = 'tansig';
       net.layers{2}.transferFcn = 'logsig';
 
     Here we change the number of elements in input 1 to 2, by setting
      each element's range:
 
       net.inputs{1}.range = [0 1; -1 1];
 
     Next we can simulate the network for a 2-element input vector:
 
       p = [0.5; -0.1];
       y = sim(net,p)
 
   See also INIT, REVERT, SIM, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

22-Dec-2005 12:18:48

Size:

9969 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>newc.m
ApplicationRoot>WavixIV>neural501>newcf.m
ApplicationRoot>WavixIV>neural501>newdtdnn.m
ApplicationRoot>WavixIV>neural501>newelm.m
ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newfftd.m
ApplicationRoot>WavixIV>neural501>newgrnn.m
ApplicationRoot>WavixIV>neural501>newhop.m
ApplicationRoot>WavixIV>neural501>newlin.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>newlrn.m
ApplicationRoot>WavixIV>neural501>newlvq.m
ApplicationRoot>WavixIV>neural501>newp.m
ApplicationRoot>WavixIV>neural501>newpnn.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m
ApplicationRoot>WavixIV>neural501>newsom.m
ApplicationRoot>WavixIV>neural501>nnt2hop.m
ApplicationRoot>WavixIV>neural501>nnt2rb.m
ApplicationRoot>WavixIV>neural501>template_new_network.m
ApplicationRoot>WavixIV>neural501>updatenet.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>revert.m

(back to table of contents)
 REVERT Revert network weight and bias values.
 
   Syntax
 
     net = revert(net)
 
   Description
 
     REVERT(NET) returns neural network NET with weight and bias values
     restored to the values generated the last time the network was
     initialized.
 
     If the network has been altered so that it has different weight
    and bias connections or different input or layer sizes, then REVERT
    cannot set the weights and biases to their previous values and they
    will be set to zeros instead.
 
   Examples
 
     Here a perceptron is created with a 2-element input (with ranges
     of 0 to 1, and -2 to 2) and 1 neuron.  Once it is created we can display
     the neuron's weights and bias.
 
       net = newp([0 1;-2 2],1);
 
     The initial network has weights and biases with zero values.
 
       net.iw{1,1}, net.b{1}
 
     We can change these values as follows.
 
       net.iw{1,1} = [1 2]; net.b{1} = 5;
       net.iw{1,1}, net.b{1}
 
     We can recover the network's initial values as follows.
 
      net = revert(net);
       net.iw{1,1}, net.b{1}
 
   See also INIT, SIM, ADAPT, TRAIN.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

14-Apr-2002 16:29:18

Size:

2523 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>sim.m

(back to table of contents)
 SIM Simulate a neural network.
 
   Syntax
 
     [Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T)
     [Y,Pf,Af,E,perf] = sim(net,{Q TS},Pi,Ai,T)
     [Y,Pf,Af,E,perf] = sim(net,Q,Pi,Ai,T)
 
   Description
 
     SIM simulates neural networks.
 
     [Y,Pf,Af,E,perf] = SIM(net,P,Pi,Ai,T) takes,
       NET  - Network.
       P    - Network inputs.
       Pi   - Initial input delay conditions, default = zeros.
       Ai   - Initial layer delay conditions, default = zeros.
       T    - Network targets, default = zeros.
     and returns:
       Y    - Network outputs.
       Pf   - Final input delay conditions.
       Af   - Final layer delay conditions.
       E    - Network errors.
       perf - Network performance.
 
     Note that arguments Pi, Ai, Pf, and Af are optional and
     need only be used for networks that have input or layer delays.
 
     SIM's signal arguments can have two formats: cell array or matrix.
     
     The cell array format is easiest to describe.  It is most
     convenient for networks with multiple inputs and outputs,
     and allows sequences of inputs to be presented:
       P  - NixTS cell array, each element P{i,ts} is an RixQ matrix.
       Pi - NixID cell array, each element Pi{i,k} is an RixQ matrix.
     Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
       T  - NtxTS cell array, each element P{i,ts} is an VixQ matrix.
     Y  - NOxTS cell array, each element Y{i,ts} is a UixQ matrix.
       Pf - NixID cell array, each element Pf{i,k} is an RixQ matrix.
     Af - NlxLD cell array, each element Af{i,k} is an SixQ matrix.
       E  - NtxTS cell array, each element P{i,ts} is an VixQ matrix.
     Where:
       Ni = net.numInputs
     Nl = net.numLayers, 
       No = net.numOutputs
     ID = net.numInputDelays
     LD = net.numLayerDelays
       TS = number of time steps
       Q  = batch size
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Ui = net.outputs{i}.size
 
     The columns of Pi, Pf, Ai, and Af are ordered from oldest delay
     condition to most recent:
       Pi{i,k} = input i at time ts=k-ID.
       Pf{i,k} = input i at time ts=TS+k-ID.
       Ai{i,k} = layer output i at time ts=k-LD.
       Af{i,k} = layer output i at time ts=TS+k-LD.
 
     The matrix format can be used if only one time step is to be
     simulated (TS = 1).  It is convenient for networks with only
      one input and output, but can also be used with networks that
      have more.
 
     Each matrix argument is found by storing the elements of
     the corresponding cell array argument into a single matrix:
       P  - (sum of Ri)xQ matrix
       Pi - (sum of Ri)x(ID*Q) matrix.
     Ai - (sum of Si)x(LD*Q) matrix.
       T  - (sum of Vi)xQ matrix
     Y  - (sum of Ui)xQ matrix.
       Pf - (sum of Ri)x(ID*Q) matrix.
     Af - (sum of Si)x(LD*Q) matrix.
       E  - (sum of Vi)xQ matrix
 
     [Y,Pf,Af] = SIM(net,{Q TS},Pi,Ai) is used for networks
     which do not have an input, such as Hopfield networks
     when cell array notation is used.
 
   Examples
 
     Here NEWP is used to create a perceptron layer with a
     2-element input (with ranges of [0 1]), and a single neuron.
 
       net = newp([0 1;0 1],1);
 
     Here the perceptron is simulated for an individual vector,
     a batch of 3 vectors, and a sequence of 3 vectors.
 
       p1 = [.2; .9]; a1 = sim(net,p1)
       p2 = [.2 .5 .1; .9 .3 .7]; a2 = sim(net,p2)
       p3 = {[.2; .9] [.5; .3] [.1; .7]}; a3 = sim(net,p3)
 
     Here NEWLIND is used to create a linear layer with a 3-element
     input, 2 neurons.
 
       net = newlin([0 2;0 2;0 2],2,[0 1]);
 
     Here the linear layer is simulated with a sequence of 2 input
     vectors using the default initial input delay conditions (all zeros).
 
       p1 = {[2; 0.5; 1] [1; 1.2; 0.1]};
       [y1,pf] = sim(net,p1)
 
     Here the layer is simulated for 3 more vectors using the previous
     final input delay conditions as the new initial delay conditions.
 
       p2 = {[0.5; 0.6; 1.8] [1.3; 1.6; 1.1] [0.2; 0.1; 0]};
       [y2,pf] = sim(net,p2,pf)
 
     Here NEWELM is used to create an Elman network with a 1-element
     input, and a layer 1 with 3 TANSIG neurons followed by a layer 2
     with 2 PURELIN neurons.  Because it is an Elman network it has a
     tap delay line with a delay of 1 going from layer 1 to layer 1.
 
       net = newelm([0 1],[3 2],{'tansig','purelin'});
 
     Here the Elman network is simulated for a sequence of 3 values
     using default initial delay conditions.
 
       p1 = {0.2 0.7 0.1};
       [y1,pf,af] = sim(net,p1)
 
     Here the network is simulated for 4 more values, using the previous
     final delay conditions as the new initial delay conditions.
 
       p2 = {0.1 0.9 0.8 0.4};
       [y2,pf,af] = sim(net,p2,pf,af)
 
   Algorithm
 
     SIM uses these properties to simulate a network NET.
 
       NET.numInputs, NET.numLayers
       NET.outputConnect, NET.biasConnect
       NET.inputConnect, NET.layerConnect
 
     These properties determine the network's weight and bias values,
     and the number of delays associated with each weight:
 
       NET.inputWeights{i,j}.value
       NET.layerWeights{i,j}.value
       NET.layers{i}.value
       NET.inputWeights{i,j}.delays
       NET.layerWeights{i,j}.delays
 
     These function properties indicate how SIM applies weight and
     bias values to inputs to get each layer's output:
 
       NET.inputWeights{i,j}.weightFcn
       NET.layerWeights{i,j}.weightFcn
       NET.layers{i}.netInputFcn
       NET.layers{i}.transferFcn
   
     See Chapter 2 for more information on network simulation.
 
   See also INIT, REVERT, ADAPT, TRAIN

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

22-Dec-2005 12:18:50

Size:

10133 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calcpd.m
ApplicationRoot>WavixIV>neural501>con2seq.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>seq2con.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>subsasgn.m

(back to table of contents)
 SUBSASGN Assign fields of a neural network.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

03-Oct-2006 15:51:30

Size:

71061 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m

(back to table of contents)
 SUBSASGN Assign fields of a neural network.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

03-Oct-2006 15:49:08

Size:

71472 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>subsref.m

(back to table of contents)
 SUBSREF Reference fields of a neural network.

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

14-Apr-2002 16:29:12

Size:

1078 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>train.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)
 TRAIN Train a neural network.
 
   Syntax
 
     [net,tr,Y,E,Pf,Af] = train(NET,P,T,Pi,Ai,VV,TV)
 
   Description
 
     TRAIN trains a network NET according to NET.trainFcn and
     NET.trainParam.
 
     TRAIN(NET,P,T,Pi,Ai) takes,
       NET - Network.
       P   - Network inputs.
       T   - Network targets, default = zeros.
       Pi  - Initial input delay conditions, default = zeros.
       Ai  - Initial layer delay conditions, default = zeros.
       VV  - Structure of validation vectors, default = [].
       TV  - Structure of test vectors, default = [].
     and returns,
       NET - New network.
       TR  - Training record (epoch and perf).
       Y   - Network outputs.
       E   - Network errors.
       Pf  - Final input delay conditions.
       Af  - Final layer delay conditions.
 
     Note that T is optional and need only be used for networks
     that require targets.  Pi and Pf are also optional and need
     only be used for networks that have input or layer delays.
     Optional arguments VV and TV are described below.
 
     TRAIN's signal arguments can have two formats: cell array or matrix.
     
     The cell array format is easiest to describe.  It is most
     convenient for networks with multiple inputs and outputs,
     and allows sequences of inputs to be presented:
       P  - NixTS cell array, each element P{i,ts} is an RixQ matrix.
       T  - NtxTS cell array, each element P{i,ts} is an VixQ matrix.
       Pi - NixID cell array, each element Pi{i,k} is an RixQ matrix.
       Ai - NlxLD cell array, each element Ai{i,k} is an SixQ matrix.
       Y  - NOxTS cell array, each element Y{i,ts} is an UixQ matrix.
       E  - NtxTS cell array, each element P{i,ts} is an VixQ matrix.
       Pf - NixID cell array, each element Pf{i,k} is an RixQ matrix.
       Af - NlxLD cell array, each element Af{i,k} is an SixQ matrix.
     Where:
       Ni = net.numInputs
       Nl = net.numLayers
       Nt = net.numTargets
       ID = net.numInputDelays
       LD = net.numLayerDelays
       TS = number of time steps
       Q  = batch size
       Ri = net.inputs{i}.size
       Si = net.layers{i}.size
       Vi = net.targets{i}.size
 
     The columns of Pi, Pf, Ai, and Af are ordered from the oldest delay
     condition to most recent:
       Pi{i,k} = input i at time ts=k-ID.
       Pf{i,k} = input i at time ts=TS+k-ID.
       Ai{i,k} = layer output i at time ts=k-LD.
       Af{i,k} = layer output i at time ts=TS+k-LD.
 
     The matrix format can be used if only one time step is to be
     simulated (TS = 1).  It is convenient for network's with
      only one input and output, but can be used with networks that
      have more.
 
     Each matrix argument is found by storing the elements of
     the corresponding cell array argument into a single matrix:
       P  - (sum of Ri)xQ matrix
       T  - (sum of Vi)xQ matrix
       Pi - (sum of Ri)x(ID*Q) matrix.
       Ai - (sum of Si)x(LD*Q) matrix.
       Y  - (sum of Ui)xQ matrix.
       E  - (sum of Vi)xQ matrix
       Pf - (sum of Ri)x(ID*Q) matrix.
       Af - (sum of Si)x(LD*Q) matrix.
 
     If VV and TV are supplied they should be an empty matrix [] or
     a structure with the following fields:
       VV.P,  TV.P  - Validation/test inputs.
       VV.T,  TV.T  - Validation/test targets, default = zeros.
       VV.Pi, TV.Pi - Validation/test initial input delay conditions, default = zeros.
       VV.Ai, TV.Ai - Validation/test layer delay conditions, default = zeros.
     The validation vectors are used to stop training early if further
     training on the primary vectors will hurt generalization to the
     validation vectors.  Test vector performance can be used to measure
     how well the network generalizes beyond primary and validation vectors.
     If VV.T, VV.Pi, or VV.Ai are set to an empty matrix or cell array,
     default values will be used. The same is true for TV.T, TV.Pi, TV.Ai.
 
     Not all training functions support validation and test vectors.
     Those that do not ignore the VV and TV arguments.
 
   Examples
 
     Here input P and targets T define a simple function which
     we can plot:
 
       p = [0 1 2 3 4 5 6 7 8];
       t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
       plot(p,t,'o')
 
     Here NEWFF is used to create a two layer feed forward network.
     The network will have an input (ranging from 0 to 8), followed
     by a layer of 10 TANSIG neurons, followed by a layer with 1
     PURELIN neuron.  TRAINLM backpropagation is used.  The network
     is also simulated.
 
       net = newff([0 8],[10 1],{'tansig' 'purelin'},'trainlm');
       y1 = sim(net,p)
       plot(p,t,'o',p,y1,'x')
 
     Here the network is trained for up to 50 epochs to a error goal of
     0.01, and then resimulated.
 
       net.trainParam.epochs = 50;
       net.trainParam.goal = 0.01;
       net = train(net,p,t);
       y2 = sim(net,p)
       plot(p,t,'o',p,y1,'x',p,y2,'*')
       
   Algorithm
 
     TRAIN calls the function indicated by NET.trainFcn, using the
     training parameter values indicated by NET.trainParam.
 
     Typically one epoch of training is defined as a single presentation
     of all input vectors to the network.  The network is then updated
     according to the results of all those presentations.
 
     Training occurs until a maximum number of epochs occurs, the
     performance goal is met, or any other stopping condition of the
     function NET.trainFcn occurs.
 
     Some training functions depart from this norm by presenting only
     one input vector (or sequence) each epoch. An input vector (or sequence)
     is chosen randomly each epoch from concurrent input vectors (or sequences).
     NEWC and NEWSOM return networks that use TRAINR, a training function
     that does this.
 
   See also INIT, REVERT, SIM, ADAPT

Path:

ApplicationRoot\WavixIV\neural501\@network

Last modified:

17-Aug-2004 16:42:14

Size:

12475 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>calcpd.m
ApplicationRoot>WavixIV>neural501>con2seq.m
ApplicationRoot>WavixIV>neural501>seq2con.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>private>isbool.m
ApplicationRoot>WavixIV>neural501>@network>private>isposint.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>private>checkai.m
ApplicationRoot>WavixIV>neural501>@network>private>checkp.m
ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m
ApplicationRoot>WavixIV>neural501>@network>private>checkt.m
ApplicationRoot>WavixIV>neural501>@network>private>formatai.m
ApplicationRoot>WavixIV>neural501>@network>private>formatp.m
ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m
ApplicationRoot>WavixIV>neural501>@network>private>formatt.m
ApplicationRoot>WavixIV>neural501>@network>private>active.m
ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>active.m

(back to table of contents)
 ACTIVE Returns number of structures in cell array.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:24

Size:

278 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>disp.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>checkai.m

(back to table of contents)
 CHECKAI Check Ai dimensions.
 
   Synopsis
 
     [err,Ai] = checkpi(net,Ai,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:12

Size:

1480 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>checkp.m

(back to table of contents)
 CHECKP Check P dimensions.
 
   Synopsis
 
     [err] = checkp(net,P,Q,TS)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:14

Size:

1155 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>checkpi.m

(back to table of contents)
 CHECKPI Check Pi dimensions.
 
   Synopsis
 
     [err,pi] = checkpi(net,Pi,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:18

Size:

1480 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>checkt.m

(back to table of contents)
 CHECKT Check T dimensions.
 
   Synopsis
 
     [err,T] = checkp(net,T,Q,TS)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:06

Size:

1383 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>formatai.m

(back to table of contents)
 FORMATAI Format matrix Ai.
 
   Synopsis
 
     [err,Ai] = formatai(net,Ai,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:30:20

Size:

1124 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>formatp.m

(back to table of contents)
 FORMATP Format matrix  P.
 
   Synopsis
 
     [err,P] = formatp(net,P,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:24

Size:

796 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>formatpi.m

(back to table of contents)
 FORMATPI Format matrix Pi.
 
   Synopsis
 
     [err,Pi] = formatpi(net,Pi,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:56

Size:

1122 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>formatt.m

(back to table of contents)
 FORMATT Format matrix T.
 
   Synopsis
 
     [err,T] = formatt(net,T,Q)
 
   Warning!!
 
     This function may be altered or removed in future
     releases of the Neural Network Toolbox. We recommend
     you do not write code dependant on this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:26

Size:

1009 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>hasfield.m

(back to table of contents)
 HADFIELD Does structure have a field.
 
    Syntax
  
      hasfield(S,N)
  
    Warning!!
  
      This function may be altered or removed in future
      releases of the Neural Network Toolbox. We recommend
      you do not write code which calls this function.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:30

Size:

500 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>train.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>isbool.m

(back to table of contents)
 ISBOOL True for properly sized boolean matrices.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:36

Size:

370 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m

(back to table of contents)

ApplicationRoot>WavixIV>neural501>@network>private>isposint.m

(back to table of contents)
 ISPOSINT True for positive integer values.

Path:

ApplicationRoot\WavixIV\neural501\@network\private

Last modified:

14-Apr-2002 16:29:54

Size:

272 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>adapt.m
ApplicationRoot>WavixIV>neural501>@network>disp.m
ApplicationRoot>WavixIV>neural501>@network>display.m
ApplicationRoot>WavixIV>neural501>@network>gensim.m
ApplicationRoot>WavixIV>neural501>@network>init.m
ApplicationRoot>WavixIV>neural501>@network>loadobj.m
ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>revert.m
ApplicationRoot>WavixIV>neural501>@network>sim.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m
ApplicationRoot>WavixIV>neural501>@network>subsref.m
ApplicationRoot>WavixIV>neural501>@network>train.m

Is called by functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>@network>subsasgn.m
ApplicationRoot>WavixIV>neural501>@network>subsasgnMatlab.m

(back to table of contents)

ModelitUtilRoot>ANY2WGS.m

(back to table of contents)
  ANY2WGS - convert coordinates to WG84 coordinate, truncate if needed
  
  CALL:
      WGS = ANY2WGS(crd_in, format)
  
  INPUT:
      crd_in: <array of float> coordinates to convert to RD
      format: <string> (optional) possible values:
                       (default) 'RD' - RD coordinates
                                 'E50' - 
  
  OUTPUT:
   WSG: WGS84 coordinates

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 11:08:19

Size:

1839 bytes

Calls functions:

ModelitUtilRoot>RWSnat>CrdCnv.m

Is called by functions:

ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)

ModelitUtilRoot>ComposeDirList.m

(back to table of contents)
  ComposeDirList -
 
  CALL:
   Contents = ComposeDirList(dirlist,fields,dateformat)
  
  INPUT:
   dirlist:
   fields:
   dateformat:
  
  OUTPUT:
   Contents: <struct> met velden:
                      header - <cellstring> met kolomnamen
                      data - <cell array> met data
                      op grond waarvan een tabel gevuld kan worden
  
  See also: jacontrol

Path:

ModelitUtilRoot

Last modified:

22-Feb-2008 20:04:54

Size:

2577 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m

(back to table of contents)

ModelitUtilRoot>aggBins.m

(back to table of contents)
  aggBins - deel de vector X met waarden Y op in bins (intervallen met
            dezelfde waarden)
  
  CALL:
   [X, Y, widths] = aggBins(X, Y)
  
  INPUT:
   X: <double> met klassemiddens (lengte is length(Y))
               of bingrenzen (lengte is length(Y) + 1) 
   Y: <double> met bij X horende waarden
  
  OUTPUT:
   X:      <double> bingrenzen (lengte is length(Y) + 1), naast elkaar
                    gelegen intervallen met dezelfde waarden zijn 
                    geaggregeerd tot 1 bin
   Y:      <double> waarden behorend bij X
   widths: <handle> breedte van alle bins

Path:

ModelitUtilRoot

Last modified:

14-Oct-2007 08:54:12

Size:

1305 bytes

Calls functions:

ModelitUtilRoot>runlength.m

Is called by functions:

ApplicationRoot>wavixIV>MONITOR>monitorview.m
ModelitUtilRoot>pcolorBar.m

(back to table of contents)

ModelitUtilRoot>asciiedit.m

(back to table of contents)
  asciiedit - open file in ascii editor
  
  CALL
      asciiedit(fname)
  
  INPUT
    fname: te openene file
    
  OUTPUT
    geen (er word een file geopend in een ascii editor)
    
  AANPAK
    het pad naar de editor wordt gelezen uit het script notepad.bat
    wanneer dit niet aanwezig script niet aanwezig is, is notepad.exe (zonder pad)
    de default editor
    Het script notepad.bat wordt aangemaakt met het commando 
       which notepad.exe > notepad.bat

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 18:35:14

Size:

1569 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ModelitUtilRoot>assertm.m

(back to table of contents)
  assert - check condition. If false call error(msg)
  
  CALL
      assertm(condition)
      assertm(condition,msg)
      
  INPUT
      condition:
          boolean
       msg:
           error message that will be displayed if condition==false
           
  OUTPUT
      This function returns no output arguments
      
  EXAMPLE
      assertm(exist(fname,'file'),'input file does not exist')
      
  NOTE
      assertm.m replaces assert.m because 2008a contains a duplicate
      function assert

Path:

ModelitUtilRoot

Last modified:

06-May-2009 13:49:55

Size:

704 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>installPackage.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_set.m

(back to table of contents)

ModelitUtilRoot>autolegend.m

(back to table of contents)
  autolegend - (her)installeer legenda of voer callback van legenda uit
 
  CALL:
   [RESIZEDELAYED, ACTIVE] = autolegend(VISIBLE, opt)
 
  INPUT:
   opt:
         opt.CLIPFRAME  : do not show legend items outside this area
         opt.LEGFRAME   : handle of frame on which to plot legend. to be resized after
                          updating legend.
                          IF NOT EMPTY: set pixelsize for this frame
                          and indicate of call to mbdresize is needed
  		 opt.PLOTAXES   : handle(s) of axes to plot legend from
         opt.patchprops : if specified a patch will be plotted just
                          inside the clipframe. This patch obscures
                          elements from the graph and thus prevents
                          mingling of the legend with the rest of
                          the graph.
                          example: struct('facec',AXESCOLOR)
         opt.headerprops: if specified a header will be plotted with
                          the properties specified in this
                          structure. Note that the header will be
                          plotted using "text" (not
                          "uicontrol('style','text')")
                          example: struct('str',Legend,'fontw','bold')
          opt.maxpixelh : limit to the pixelheight of the frame
          opt.unique    : if 1, show only first occurence of label
                          (default 0)
          opt.legendbd: buttondown function
          opt.NORESIZE:   if true. Do not modify application data "pixelsize" of
                          LEGFRAME depending on legend (non default). In
                          some instances this behavior is not wanted
                          (for examples) if legends are required to
                          be aligned.
 
           opt.LINEW
           opt.LMARGE
           opt.MIDMARGE
           opt.RMARGE
           opt.TMARGE
           opt.VMARGE
           opt.BMARGE
           opt.font: <struct> with fields 
 
  INDIRECT INPUT
      application data "label": this functions searches for line or patch
          objects for which the application data label has been set.
          Toggle sequence for these items: NORMAL-EMPHASIS-NORMAL
      application data "legtext": this functions searches for line or patch
          objects for which tjhe application data label has been set
          Toggle sequence for these items: NORMAL-EMPHASIS-OFF-NORMAL
 
   OUTPUT
       RESIZEDELAYED: if 1: frame size has changed, mbdresize should be called to paint frames
       ACTIVE: true if legend contains at least 1 element
       legItems: line o
       +----label
       +----handles
       +----hidable
       +----leghandle: handle of line or patch object in legend
 
  INDIRECT OUTPUT
      This function delets and plots legend objects
      This function sets the pixelsize width of FRAMEAXES
      If patchprops is specified this function initiates a global invisible
      axes (LAYER 3), or makes an earlier global axes the current one.
 
   CODE EXAMPLE
 
          % STEP 1: Install frame for legend (include this code when
          %         installing the GUI)
          % create outer frame:
          h_frame  = mbdcreateframe(h_parent,...
              'title','Legend',...
              'tag','fixedlegendframe',...
              'pixelsize',[NaN 0],...  %width depends on subframe
              'normsize',[0 1],...     %height depends on parent frame
              'lineprops',mbdlineprops,...%do not use border==1, because then lines will not be visible
              'minmarges',[2 2 2 2]);
 
          % create slider and link this to outer frame ==> changing the
          % sliders value will shift the contents of the outer frame
          hslid=uicontrol('style','slider');
          mbdlinkobj(hslid,h_frame,...
              'normpos',[1 0 0 1],...
              'pixelpos',[-12 0 12 0]);
          mbdlinkslider2frame(hslid,h_frame);
          %note: slider claims part of the width of the outer frame.
          %autolegend takes this into account by claiming extra room for the
          %inner frame
 
          %specify the inner frame. This frame may move up and down in the
          %outer frame, depending on the slider position
          mbdcreateframe(h_frame,...
              'tag','innerlegendframe',...
              'pixelsize',[0 0],...
              'normsize',[0 1],...
              'border',0,...
              'splithor',0,...
              'minmarges',[0 0 0 0]);
          %Alle required frames are now installed
 
          <other code>
          %--------------------------
          <other code>
 
          % STEP 2: Install axes, plot figure and set label properties
          axes('tag','MyAxes')
          h=plot(1:10)
          setappdata(h,'label','My Line'); %setting the label property
          %tells autolegend to include the label
          h=line(1:10,2:11)
          setappdata(h,'legtext','My Line2'); %setting the legtext property
          %tells autolegend to include the label
 
 
          <other code>
          %--------------------------
          <other code>
 
 
          % STEP 3: Update the legend
          legopt=struct('LEGFRAME',gch('innerlegendframe',HWIN),...
              'CLIPFRAME',gch('fixedlegendframe',HWIN),...
              'PLOTAXES',[gch('MyAxes',HWIN);gch('OtherAxes',HWIN)]);
          if autolegend(1,legopt)
             %autolegend may change the size of innerlegendframe, depending on the displayed label sizes.
             %If this is the case, mbdresize must be called to repaint all frames
             mbdresize;
          end

Path:

ModelitUtilRoot

Last modified:

13-Oct-2009 19:34:00

Size:

24304 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframecontent.m
ModelitUtilRoot>MBDresizedir>mbd_initialize_axis.m
ModelitUtilRoot>MBDresizedir>mbdinnerpixelsize.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>getuicpos.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>c.m

(back to table of contents)
 script that closes all figures and clears all variables
 not used as a function in any application

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 12:38:38

Size:

164 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>boiler_process.m
ApplicationRoot>WavixIV>neural501>boiler_weight.m

(back to table of contents)

ModelitUtilRoot>cell2hashtable.m

(back to table of contents)
  cell2hashtable - converteer cellarray naar een java hashtable
  
  CALL:
   ht = cell2hashtable(c)
  
  INPUT:
   c: cellarray met twee kolommen: kolom 1: hashtable keys
                                   kolom 2: hashtable waarden
  OUTPUT:
   ht: java.util.Hashtable
  
  See also: hashtable2cell

Path:

ModelitUtilRoot

Last modified:

29-Jan-2008 20:05:48

Size:

542 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>hashtable2cell.m

(back to table of contents)

ModelitUtilRoot>centralpos.m

(back to table of contents)
  centralpos - positioneer een window min of meer in het midden van een 
               scherm
  
  CALL:
   pos = centralpos(windowSize)
  
  INPUT:
    windowSize: window size in pixels
  
  OUTPUT
      pos: new centralized position for figure
  
  EXAMPLE:
   %centralize current window
   centralpos(mbdpixelsize(hframe));
  
  see also: mbdresize, mbdpixelsize, movegui(HWIN,'center');

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 12:03:48

Size:

599 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ModelitUtilRoot>chararray2char.m

(back to table of contents)
  chararray2char - convert char array to string
 
  CALL:
   str = chararray2char(str)
 
  INPUT:
   str: char array
   linebreak: (optinal) string with linebreak character
              default: char(10)
 
  OUTPUT:
   str: string

Path:

ModelitUtilRoot

Last modified:

09-Oct-2009 11:56:28

Size:

451 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>copystructure.m

(back to table of contents)
  copystructure - kopieer inhoud van de ene naar de andere structure,
                  maar houd oorspronkelijke volgorde van velden vast
                  Indien nodig worden nieuwe velden toegevoegd
 
  CALL:
   copyto = copystructure(copyfrom,copyto)
 
  INPUT:
   copyfrom: <struct> structure with overrides
             NOTE: "copyfrom" should support methods "fieldnames" and
             "subsasgn". Therefore undoredo objects are allowed here.
 
   copyto:   <struct> structure with overridable data
 
  OUTPUT:
   copyto:   <struct> adapted structure

Path:

ModelitUtilRoot

Last modified:

17-Apr-2010 13:51:56

Size:

6273 bytes

Calls functions:

ModelitUtilRoot>row_is_in.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>diaroutines>displayStations.m

(back to table of contents)

ModelitUtilRoot>date_ax.m

(back to table of contents)
  date_ax - supply a number of axes with date ticks
 
  CALL:
   date_ax(xa,ya)
 
  INPUT:
   xa: x axes handles 
   ya: y axes handles
 
  OUTPUT:
   none
  
  APPROACH:
  It is assumed that data are specified in datenum format
  
  See also: zoomtool
  

Path:

ModelitUtilRoot

Last modified:

27-Nov-2006 13:54:34

Size:

870 bytes

Calls functions:

ModelitUtilRoot>datetick_eu.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>datenum2java.m

(back to table of contents)
  datenum2java - convert Matlab datenum to Java date
  
  CALL
      jdate = datenum2java(dn)
      
  INPUT
      dn:
          matlab datenumber
          
  OUTPUT
      jdate:
          Equivalent Java date object

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 18:50:04

Size:

398 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>@table>composeList.m

(back to table of contents)

ModelitUtilRoot>datetick_eu.m

(back to table of contents)
 Display dateticks  in eu style
 MOFDIFIED 18 Dec 2000 by Nanne van der Zijpp, for application in Matlab V6
 Suppress warnings
 WYZ May 2004: use newer datetick as a base file
 WYZ May 2006: use newer datetick as a base file (Matlab R2006a)
 Look for PATCHMODELIT to find applied changes

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 11:35:49

Size:

18184 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>date_ax.m

(back to table of contents)

ModelitUtilRoot>debugline.m

(back to table of contents)

Path:

ModelitUtilRoot

Last modified:

22-Mar-2009 14:29:44

Size:

624 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m

(back to table of contents)

ModelitUtilRoot>decomment_line.m

(back to table of contents)
  decomment_line - remove comment from separate line
  
  CALL:
   str = decomment_line(str)
  
  INPUT:
   str: <string> to decomment
  
  OUTPUT:
   str: <string> without comments
  
  See also: strtok, deblank, readComments

Path:

ModelitUtilRoot

Last modified:

18-Sep-2010 18:52:46

Size:

1237 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ModelitUtilRoot>readstr.m

(back to table of contents)

ModelitUtilRoot>defaultpath.m

(back to table of contents)
  defaultpath - store or retrieve default path
  NOTE: this module will become obsolete. It has been replaced by
        defaultpathNew. 
 
  CALL
      [NewPath,Pathlist]=defaultpath(NewPath,tag)
  
  NOTE
      "defaultpath" will become obsolete. Use defaultpathNew instead. Note
      that defaultpathNew requires tag as first argument.

Path:

ModelitUtilRoot

Last modified:

21-Feb-2010 15:04:29

Size:

1043 bytes

Calls functions:

ModelitUtilRoot>defaultpathNew.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ModelitUtilRoot>selectdir.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m

(back to table of contents)

ModelitUtilRoot>defaultpathNew.m

(back to table of contents)
  defaultpathNew - store or retrieve default path
  NOTE: this module replaces defaultpath
 
  CALL
      Retrieve path or history:
          [NewPath]=defaultpathNew(tag)
          [NewPath,Pathlist]=defaultpathNew(tag)
      Set path and history:
          defaultpathNew(tag,NewPath)
          [NewPath]=defaultpathNew(tag,NewPath)
          [NewPath,Pathlist]=defaultpathNew(tag,NewPath)
 
  INPUT
      tag: integer of char string identifier (deafults to 1).
      NewPath: path history
            if no input, path will be retrieved from preference settings
            if setting does not exist, default path = pwd/data
            if directory pwd/data does not exist default path =defaultPath
      defaultPath (optioneel) default: pwd
  OUTPUT
      NewPath: preferred path (existence has been checked)
      Pathlist: 
          history of last 25 selected paths (existence has been checked
  NOTE
      The path returned by defaultpath includes the filesep sign!!
 
  
  See also:
      mbdparse
      www.modelit.nl/modelit/matlabnotes/mbdparse-dropdown.pdf

Path:

ModelitUtilRoot

Last modified:

02-Jun-2010 07:24:42

Size:

6076 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>getprefModelit.m
ModelitUtilRoot>PublicFiles>isprefModelit.m
ModelitUtilRoot>PublicFiles>prefutilsModelit.m
ModelitUtilRoot>PublicFiles>setprefModelit.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>slashpad.m
ModelitUtilRoot>str2fieldname.m

Is called by functions:

ModelitUtilRoot>getfile.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>@filechooser>set_directory.m

(back to table of contents)

ModelitUtilRoot>dprintf.m

(back to table of contents)
  dprintf - shortcut for disp(sprintf(formatstr,arg1,arg2,..arg14))
 
 CALL
   dsprintf(formatstr,arg1,arg2,..arg14)
 
 INPUT
   formatstr        : format string (char array)
   arg1,arg2,..arg14: 
 
 OUTPUT
  a string is displayed in the command window
 
 See also:
  SPRINTF, DISP, EPRINTF, DDPRINTF dprintfb
 

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 14:24:51

Size:

535 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>exetimestamp_create.m
ModelitUtilRoot>installPackage.m
ModelitUtilRoot>getoptions.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>writestr.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>debugline.m
ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>setMouseWheel.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m
ModelitUtilRoot>rbline2.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>is_eq.m
ModelitUtilRoot>rmfiles.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>CONHOP>SimulNN.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>eprintf.m

(back to table of contents)
  eprintf - shortcut for error(sprintf(formatstr,arg1,arg2,..arg14))
 
  CALL:
   eprintf(formatstr,arg1,arg2,..arg14)
 
  INPUT:
   formatstr        : format string (char array)
   arg1,arg2,..arg14: 
 
  OUTPUT:
  a string is displayed in the command window
 
  See also: sprintf, disp, dprintf

Path:

ModelitUtilRoot

Last modified:

26-Feb-2008 23:11:32

Size:

403 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>writestr.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>readcell.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ModelitUtilRoot>readstr.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>evalCallback.m

(back to table of contents)
  evalCallback - execute uicontrol callback from command line or function
  
  INPUT
      CallBack: one of the following:
          - string to evaluate (obsolete)
          - function pointer
          - cell array, first element is function pointer            
      hObject: handle to pass on
      event:  appears to be unused 
      varargin: arguments to pass on to function
  
  See also: evalany

Path:

ModelitUtilRoot

Last modified:

06-Apr-2009 17:28:53

Size:

2053 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>exetimestamp_create.m

(back to table of contents)
  exetimestamp_create - creeer de file exetimestamp.m
  
  CALL
      exetimestamp_create(applicname,vrs): create/update exetimestamp m-file
      exetimestamp_create: create overview of exetimestamp m-files
      
  INPUT
    applicname: Name of application (optional)
                NOTE: any '_' symbol will be replaced with blanks in the
                screen message
    vrs       : M-file bundle version number (optional)
                vrs is usually specified as a string to control number of
                digits, or to added letter. For example 1.10a.
                If not specified numerically, it will be converted to
                string.
 
  EXAMPLE
     build script:
         exetimestamp_create('MYPROG','1.00')
     m-file:
         exetimestamp_create_MYPROG;

Path:

ModelitUtilRoot

Last modified:

10-Mar-2010 10:11:20

Size:

6095 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>writestr.m

Is called by functions:

ApplicationRoot>WavixIV>build.m

(back to table of contents)

ModelitUtilRoot>exist_cmp.m

(back to table of contents)
  exist_cmp - check if file or directory exists
  
  CALL
      rc=exist_cmp(str,mode)
      
  INPUT
      str: string to look for
      mode: {'file'} or 'dir'
      
  SEE ALSO
      isdirectory
      
  EXAMPLES
  	exist_cmp('utils','dir')
  	exist_cmp('aotoexec.bat','file')
  
  NOTE:
      -1-
      this version behaves like 'exist' but can be compiled
      -2-
      This function is now obsolete because Matlab provides a version of
      exist that compiles without problems

Path:

ModelitUtilRoot

Last modified:

17-Aug-2008 18:04:34

Size:

1192 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>extensie.m

(back to table of contents)
  extensie- verify extension, append if needed
  
 CALL
      fname=extensie(fname,ext)
 
 INPUT
     fname: 
          candidate filename
     ext  :
          required file extension
 
 OUTPUT
      fname: 
          filename including extension
  
  See also: fileparts, putfile, getfile

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 12:52:35

Size:

611 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>diaroutines>writedia_R14.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>installjar.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>putfile.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ModelitUtilRoot>docutool>show.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m

(back to table of contents)

ModelitUtilRoot>findstructure.m

(back to table of contents)
  findstructure - find matching elements of structure in structure array
  CALL
      Indx=findstructure(PatternStruct,StructArray)
  
  INPUT
      PatternStruct: structure to look for 
                     this must be a non-empty structure 
      StructArray: structure array to look in
                     this must be a structure array that has at least the
                     fields of PatternStruct
      flds: fields to compare (optional)
            default value: intersection of fields in  PatternStruct and StructArray
      EXACT: if false also look for partial matches: match 'aaa' with 'aaabb'
 
  OUTPUT
      Indx: StructArray(Indx) corresponds to PatternStruct
  
  SEE ALSO
      is_in_struct
      is_in
      row_is_in

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 21:40:07

Size:

2547 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>is_in_struct.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>CONHOP>matgetvar2.m

(back to table of contents)

ModelitUtilRoot>gch.m

(back to table of contents)
  gch - find uicontrol handles with specified tags
  
  CALL:
   h = gch(tag, hwin, h)
 
  INPUT:
   tag:  string or cellstring with tags
   hwin: (optional) handle of window to search in
         default value: gcf
   h:    (optional) the default value
    
  OUTPUT:
    h: array with handles of uicontrol object with the specified tag
    
  EXAMPLE:
     h=0; %0 means unitialized
     HWIN = figure;
     if expression
         %this line might or might not be reached
         h=gch('mytag',HWIN);
     end
     h=gch('mytag',HWIN,h); %retrieve h if uninitialized
 
  NOTE:
   [] is NOT a correct way to denote an unitialize handle
  
  See also: gchbuf, gcjh

Path:

ModelitUtilRoot

Last modified:

20-Apr-2009 11:34:43

Size:

1481 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>WavixIV>wavixshowopts.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>gcjh.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_databeheer.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>WavixIV>wavixshowdata.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>jacontrol>tableWindow.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ModelitUtilRoot>transact_update.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_regressiebeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m
ModelitUtilRoot>diaroutines>displayStations.m

(back to table of contents)

ModelitUtilRoot>gcjh.m

(back to table of contents)
  gcjh - find jacontrol object handles with specified tags
  
  CALL:
   h = gcjh(tag, hwin, h)
 
  INPUT:
   tag:  string or cellstring with tags
   hwin: (optional) handle of window to search in
         default value: gcf
   h:    (optional) the default value
    
  OUTPUT:
    h: array with handles of jacontrol object with the specified tag
    
  See also: gch, findjac

Path:

ModelitUtilRoot

Last modified:

29-Apr-2008 14:13:08

Size:

1068 bytes

Calls functions:

ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>htmlWindow.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>getFigureClientBase.m

(back to table of contents)
  getFigureClientBase - get FigureClientBase object for specified figure
  
  CALL:
      FigureClientBase = getFigureClientBase(HWIN)
  
  INPUT:
      HWIN: <handle> of figure
  
  OUTPUT:
      FigureClientBase: 
          <java object>
          com.mathworks.hg.peer.FigureClientProxy$FigureDTClientBase

Path:

ModelitUtilRoot

Last modified:

17-Apr-2009 10:29:38

Size:

916 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>setMouseWheel.m

(back to table of contents)

ModelitUtilRoot>getMatlabVersion.m

(back to table of contents)
  getMatlabVersion - retrieve Matlab version as numeric constant
  
  CALL
      v=getMatlabVersion
      
  INPUT
      No input arguments required
      
  OUTPUT
      v: Matlabversion.
         Examples of output:
              6.5018
              7.0124
              7.0436
              7.1024  
              7.9052 - R2009b

Path:

ModelitUtilRoot

Last modified:

12-Aug-2010 12:37:55

Size:

938 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>seticon.m
ModelitUtilRoot>zoomtool.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>setMouseWheel.m
ModelitUtilRoot>getRootPane.m

(back to table of contents)

ModelitUtilRoot>getRemoteFile.m

(back to table of contents)
  getRemoteFile - get file from ftp server
  
  CALL
      getRemoteFile(obj, event, C, fname)
      getRemoteFile(obj, event, C, fname, path)
      getRemoteFile(obj, event, C, fname, path, SEARCHLOCAL)
      getRemoteFile(obj, event, C, fname, path, SEARCHLOCAL, postProcess)
      getRemoteFile(obj, event, C, fname, path, SEARCHLOCAL, postProcess,MAXVERSION)
  
  INPUT
      obj,event: not used
      C:
          structure with constants
          +----FRAMECOLOR : background color for frame
          +----TEXTPROPS  : font properties for text object
          +----PUSHPROPS  : properties for button object
      fname:
          file naam zonder pad
      path:
          {url,username,password, path1{:}}
      SEARCHLOCAL:
          look for local file before downloading
      postProcess: <function pointer>
          postprocess function. After a succesfull download the argument
          "fname" including loacal path will be passed on to this function:
          postProcess(fname)  
      MAXVERSION: <logical>
          (if true) look for all version and download highest version
  
  See also: helpmenu
      
  EXAMPLE
      %create button HELP in toolbar
      Htool = uitoolbar(HWIN);
      uipushtool(Htool,'cdata',getcdata('help'),...
          'separator','on',...
          'tooltip','Open help file (download wanneer nodig)',...
          'clicked',{@getRemoteFile,C,'jaarcontroleHelp.pdf'});

Path:

ModelitUtilRoot

Last modified:

20-Nov-2008 00:00:10

Size:

8638 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>movegui_align.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>setPassive.m
ModelitUtilRoot>stopwaitbar.m
ModelitUtilRoot>ticpeval.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenu.m

(back to table of contents)

ModelitUtilRoot>getRoot.m

(back to table of contents)
  getRoot - get root of current directory
  
  CALL:
  
  INPUT:
   no input required
  
  OUTPUT:
  root: string

Path:

ModelitUtilRoot

Last modified:

02-Jun-2010 15:30:32

Size:

209 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>getRootPane.m

(back to table of contents)
  getRootPane - get RootPane for specified figure
  
  CALL:
      RootPane = getRootPane(HWIN)
  
  INPUT:
      HWIN: <handle> of figure
  
  OUTPUT:
      RootPane: <java object> com.mathworks.mwswing.desk.DTRootPane
  
 MATLAB COMPABILITY:
      TEST SCRIPT: c;rp=getRootPane
      TESTED WITH MATLAB VERSIONS
      6.5:                            : NO
      7.0.1.24704 (R14) Service Pack 1: YES
      7.0.4.365 (R14) Service Pack 2  : YES
      7.1.0.246 (R14) Service Pack 3  : YES
      7.2.0.232 (R2006a)              : YES
      7.3.0.267 (R2006b)              : YES

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 21:31:12

Size:

2285 bytes

Calls functions:

ModelitUtilRoot>getMatlabVersion.m

Is called by functions:

ModelitUtilRoot>setMouseWheel.m

(back to table of contents)

ModelitUtilRoot>get_c_default.m

(back to table of contents)
  get_c_default - define default colors for colors and uicontrols
  
  CALL
      C=get_c_default
      
  INPUT
      This function requires no input arguments
      
  OUPUT
      C
      +----FRAMECOLOR (double array)          
      +----WINCOLOR (double array)            
      +----DEFAULTDIR                         
      |    +----WORKSPACE (double)            
      |    +----ASCII (double)                
      |    +----BINFILES (double)             
      |    +----ADYFILES (double)             
      |    +----ADY2BINFILES (double)         
      |    +----BPSKEYFILE (double)           
      |    +----BPSMATCHFILE (double)         
      |    +----TSWDIR (double)               
      |    +----BN2FILE (double)              
      |    +----TRAJECT (double)              
      |    +----MATFILE (double)              
      |    +----AGGREGDAYFILES (double)       
      |    +----NOLFILE (double)              
      |    +----FIGFILES (double)             
      +----BSIZE (double)                     
      +----FILLSIZE (double)                  
      +----TOOLBHEIGHT (double)               
      +----TOOLBFRAMEHEIGHT (double)          
      +----LMARGE (double)                    
      +----RMARGE (double)                    
      +----LRMARGE (double)                   
      +----TMARGE (double)                    
      +----BMARGE (double)                    
      +----VMARGE (double)                    
      +----SMALLMARGE (double)                
      +----MINMARGES (double array)           
      +----LISTHEADER                         
      |    +----fonts (double)                
      |    +----style (char array)            
      |    +----fontn (char array)            
      |    +----horiz (char array)            
      |    +----backg (double array)          
      +----TEXTHEADER                         
      |    +----fonts (double)                
      |    +----fontn (char array)            
      |    +----horiz (char array)            
      |    +----VerticalAlignment (char array)
      |    +----margin (double)               
      |    +----units (char array)            
      +----EDITPROPS                          
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      |    +----backg (double array)          
      +----PUSHPROPS                          
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      +----TEXTPROPS                          
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      |    +----backg (double array)          
      |    +----horizon (char array)          
      +----TEXTMSGPROPS                       
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      |    +----backg (double array)          
      |    +----horizon (char array)          
      +----CHECKPROPS                         
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----backg (double array)          
      |    +----style (char array)            
      +----POPUPPROPS                         
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      |    +----backg (char)                  
      |    +----horiz (char array)            
      +----LISTPROPS                          
      |    +----FontName (char array)         
      |    +----FontSize (double)             
      |    +----FontWeight (char array)       
      |    +----FontUnits (char array)        
      |    +----style (char array)            
      |    +----fontn (char array)            
      |    +----horiz (char array)            
      |    +----backg (char)                  
      +----LISTHDR                            
           +----FontName (char array)         
           +----FontSize (double)             
           +----FontWeight (char array)       
           +----FontUnits (char array)        
           +----style (char array)            
           +----backg (double array)          
           +----horizon (char array)          
           +----fontn (char array)         

Path:

ModelitUtilRoot

Last modified:

31-May-2010 14:02:20

Size:

9799 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>selectdate.m

(back to table of contents)

ModelitUtilRoot>get_constants.m

(back to table of contents)
  get_constants - get user configurable options and save them to file
  
  CALL
      C=get_constants(MODE,STTFILE,LANGUAGE)
  
  INPUT
      MODE: 1==> retrieve options
            2==>start gui and retrieve/save options
      STTFILE: name of settingsfile
      LANGUAGE: dutch==> use dutch labels
                uk   ==> use uk english labels
  OUTPUT
      C: constant structure, with
         GLOBALFONT: structure with fields
             FontName
             FontSize
             FontWeight
         GLOBALGRAPHCOLOR: default color for graphs
         GLOBALFRAMECOLOR: default color for frames
         GLOBALLISTCOLOR:  default color for lists
         H:    regelhoogtes die zijn afgeleid van het default font
               pus:  (pushbutton)
               tog:  (togglebutton)
               rad:  (radiobutton)
               che:  (checkbutton)
               edi:  (editbox)
               tex:  (text)
               pop:  (popupmenu)
               max:  (maximum over alle uicontrol styles)

Path:

ModelitUtilRoot

Last modified:

20-Apr-2009 11:34:44

Size:

14104 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_initaxes.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m

(back to table of contents)

ModelitUtilRoot>getcdata.m

(back to table of contents)
  getcdata - retrieve cdata for Matlab buttons
  
  CALL:
   getcdata([],[],fname)         - load image file
   CDATA=getcdata(icon)          - retrieve icon (maintain transparancy)
   CDATA=getcdata(icon,BG)       - retrieve icon (replace transparant cells by BG)
   getcdata                      - Regenerate image file
   getcdata([],[],fname,dirname) - Regenerate image file
  
  INPUT:
   icon: icon to retrieve
   BG: fill in color for transparant cells (default NaN)
   fname: name of image file (cdt extension will be added automatically)
          NOTE: if fname contains no path, pwd will be prepended
                automatically. (WIJZ ZIJPP sep 13)
   dirname: directory to read images from when regenerating image file
  
  OUTPUT:
   cdata: M x N x 3 Cdata matrix (truecolor)
          transparant cells are marked with NaN numbers
   rc: rc=1 if succesfull
       Note: use nargout>1 to suppress warnings on the console when icon
             is missing from file 
 
  EXAMPLE 1
      use .ico file to set icon 
      The icon file contains transparancy info, however seticon can not read icon files
      
      Remedy, save PNG file first:
  %     
          S=getcdata('wavix16');
          Transparant=isnan(S(:,:,1))|isnan(S(:,:,2))|isnan(S(:,:,3));
          imwrite(S,'wavix16.png','png','alpha',uint8(~Transparant));
          seticon(gcf,'myicon.png');
          (Note: changing the png file only has effect after JAVA is cleared)
      
  EXAMPLE 1
      generate image file "myfile.cdt" from images in subdir "images":
      getcdata([],[],'myfile','images')

Path:

ModelitUtilRoot

Last modified:

30-Apr-2009 11:02:42

Size:

10743 bytes

Calls functions:

ModelitUtilRoot>copystructure.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>truecolor.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>getfile.m

(back to table of contents)
  getfile - selecteer file met specifieke extensie
  
  CALL:
   [fname,pname] = getfile(ext,showstr,BATCHMODE,fname,N)
 
  INPUT:
   ext:       <string> extensie die te selecteren file moet hebben
                       (defaultwaarde: '.m')
   showstr:   <string> met tekst die gebruiker te zien krijgt
                       (defaultwaarde: '')
   BATCHMODE: <boolean> zet deze op 1 voor onderdrukken interactie
                        (defaultwaarde: 0)
   fname:     <string> default filenaam
                       (defaultwaarde: *.ext)
   N:         <integer> default categorie file t.b.v. bewaren default 
                        directory (defaultwaarde: 1)
  
  OUTPUT:
   fname: <string> de geselecteerde filenaam
                   (Als cancel ingedrukt ==> fname = 0)
   pname: <string> het bijbehorende pad INCLUSIEF filesep teken
  
  EXAMPLE:
       [fname,pname] = getfile('txt','Selecteer ASCII file',0,'',C.DEFAULTDIR.STUURFILES);
       if ~fname
           return %gebruiker heeft gecancelled
       end
       fname = fullfile(pname, fname);
       
  See also: putfile

Path:

ModelitUtilRoot

Last modified:

15-Apr-2010 12:48:59

Size:

3485 bytes

Calls functions:

ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>extensie.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>getoptions.m

(back to table of contents)
  getoptions - read an options file 
 
  CALL:
      S = getoptions(fname,KEYwordlist,defaults,CaseSen)
 
  INPUT:
      fname      : input file
      KEYwordlist: possible fields of S
      defaults   : default options
      CaseSen    : Case Sensitivity (0/1)
 
  OUTPUT:
      S: structure with options
 
  EXAMPLE:
      -1-
      Suppose the file 'optionfile' looks like:
      Option1 99
      %Comment line
      Option2 stringvalue
      Option3 123
  
      Then the following commands:
      keyw={'Option1','Option2'}
      S=getoptions('optionfile',keyw)
  
      Results in:
      S.Option1=99
      S.Option2='stringvalue'
  
      (S.option3 does not exist because 'Option3' is not in keyword list)
  
      -2- (typical use)
      default=struct('option1',1,'option2',2,'option3',3,'option4',4);
      S = getoptions(fname,fieldnames(default),default);

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 11:25:27

Size:

4370 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m

(back to table of contents)

ModelitUtilRoot>getproperty.m

(back to table of contents)
  getproperty - return matching char string from cell array of keywords
 
  CALL:
   prop = getproperty(property,ValidProps)
      
  INPUT:
   property     - char string with property. This string contains the
                  first letters of the keyword searched for. The matching
                  is Case-Insensitive.
  
   ValidProps   - cell array with valid property values
 
  OUTPUT:
   prop       - string with property that matches ValidProps
 
  EXAMPLE:
   getproperty('my',{'MySpecialProperty'}) returns 'MySpecialProperty'    

Path:

ModelitUtilRoot

Last modified:

22-Jun-2009 11:55:44

Size:

1849 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>varargin2struct.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>MBDresizedir>mbdpatchprops.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>getuicpos.m

(back to table of contents)
 getuicpos - haal de extent van een object op inclusief randen van een frame
 
  CALL
      ext=getuicpos(h)
 
  INPUT
      h: (scalar) handle van uicontrol object
 
  OUTPUT
      ext: =[ext(1) ext(2) ext(3) ext(4)];
            [ext(3) ext(4)] = afmetingen (extent) van het object + extra ruimte
 
 aanname: de units van het object zijn in pixels

Path:

ModelitUtilRoot

Last modified:

24-Jun-2010 16:28:15

Size:

2936 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>transact_update.m

(back to table of contents)

ModelitUtilRoot>getyear.m

(back to table of contents)
  getyear - convert 2 digit year date to 4 digits
  
  CALL
      yr=getyear(yr,VERBOSE)
      
  INPUT
    yr     : 2 digit year (4 digits are allowed)
    VERBOSE: display warning when making interpretation
  
  OUTPUT
      yr: interpreted year

Path:

ModelitUtilRoot

Last modified:

11-Jun-2010 19:17:34

Size:

988 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>mbdparse.m

(back to table of contents)

ModelitUtilRoot>hashtable2cell.m

(back to table of contents)
  hashtable2cell - converteer java hashtable naar een cellarray
  
  CALL:
   c = hashtable2cell(ht)
  
  INPUT:
   ht: java.util.Hashtable
  
  OUTPUT:
   c: cellarray met twee kolommen: kolom 1: hashtable keys
                                   kolom 2: hashtable waarden
  
  See also: cell2hashtable

Path:

ModelitUtilRoot

Last modified:

13-Feb-2008 17:08:38

Size:

1008 bytes

Calls functions:

ModelitUtilRoot>cell2hashtable.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m

(back to table of contents)

ModelitUtilRoot>height.m

(back to table of contents)
  height - get matrix height
  
  CALL
      w=height(str)
      
  INPUT
      str: matrix
  
  OUTPUT
      w: matrix height
      
  SEE ALSO: size, length, width    

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 14:47:56

Size:

220 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>transact_gui.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>htmlWindow.m

(back to table of contents)
  htmlWindow - maak een scherm aan waarin html code weergegeven kan worden
  
  CALL:
   HWIN = htmlWindow(title, text)
  
  INPUT:
   title: string, titel van het scherm
   text: string, weer te geven text, eventueel in HTML
  
  OUTPUT:
   HWIN: handle

Path:

ModelitUtilRoot

Last modified:

10-Mar-2010 10:20:38

Size:

2616 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_set.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>movegui_align.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m

(back to table of contents)

ModelitUtilRoot>installPackage.m

(back to table of contents)
 Install files to compiled directory
  
  INPUT
      packageNames: cell array containing package names
      dirName: relative or absolute path to compiled directory
 
  OUTPUT
      files copied to compiled directory
  
  EXAMPLE
      installPackage({'modelit','xml','googlemaps'},'exe14');

Path:

ModelitUtilRoot

Last modified:

23-Nov-2009 16:55:34

Size:

3700 bytes

Calls functions:

ModelitUtilRoot>assertm.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>utilspath.m

Is called by functions:

ApplicationRoot>WavixIV>build.m

(back to table of contents)

ModelitUtilRoot>installjar.m

(back to table of contents)
  installjar - Create a classpath.txt file. 
  
  SUMMARY:
      Modelit provides a number of functions that require the static path 
      to be set. The static path is set at startup and read from the file
      classpath.txt. Installjar writes this file and should be run whenever
      the software is installed in a new location.
  
      installjar readme:
  
      - Some Modelit applications rely on one or more Java-Archive's (JAR files)
      created by Modelit.
  
      - installjar.exe is a utility that installs these JAR files.
  
      - Usually, an install script provided by modelit takes care of this.
      These notes provide extra information. 
  
      - installjar.exe must be run before the Modelit application is started
  
      - It is not necessary to run installjar.exe more then once, unless the
      application files are moved to a new directory
  
      - The installjar utility requires at least the following file structure
  
                  <This directory>
                  +----installjar.exe (file)
                  +----installjar.ctf (file)
                  +----java (directory)
                       +----modelit.jar (file)
                       +----<any other jar file>
  
  CALL:
   terminateApplication=installjar(ALWAYS,jarNames)
  
  INPUT
      ALWAYS:   (Optional) If true: always set the class path. If false
                only set the class path if needed.
      jarNames: (Optional) Cell array that contains the names of required
                jar files. When omitted all files in jar directory are
                installed
  
                INTERPRETED MODE
                if no arguments are specified all jar files in the utility
                directory mbdutils\java are added to the static
                javaclasspath.
                Any specified jar files should be located in the directory
                "...\mbdutils\java" when ran in on Matlab path
  
                COMPILED MODE
                if no arguments are specified all jar files in the
                directory pwd\java are added to the static javaclasspath.
                Any specified files should be located in directory "pwd\java"
  
  OUTPUT
      terminateApplication: 
                if true: terminate application (compiled mode) or terminate
                Matlab session (compiled mode)

Path:

ModelitUtilRoot

Last modified:

25-Aug-2009 14:01:52

Size:

6371 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>rootpath.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>readcell.m
ModelitUtilRoot>utilspath.m
ModelitUtilRoot>writestr.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ModelitUtilRoot>is_eq.m

(back to table of contents)
 is_eq - verify if argument pairs are equal
  
  CALL
      equal=is_eq(arg1,arg2,arg3,arg4,...)
  
  INPUT
      arg1,arg2: first argument pair
      arg3,arg4: second argument pair
      ...:       etc
  OUTPUT
      equal: 1 if all argument pairs have corresponding size and are equal
  
  NOTE
      function is verbose if no output arguments are required
  
  EXAMPLE (non verbose mode)
  		>> a=is_eq(1,0)
  		a =
               0
  EXAMPLE (verbose mode)
  		>> is_eq(1,0)
  		Arg 1,2: Not equal, Max Abs Diff = 1.000000

Path:

ModelitUtilRoot

Last modified:

02-Aug-2010 10:56:20

Size:

6084 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>table>structarray2table.m

(back to table of contents)

ModelitUtilRoot>is_in.m

(back to table of contents)
  is_in - vectorized version of 'find'
  
  CALL
      function elm=is_in(g,h,G,H)
 
  INPUT
    g: vector with elements to be located
    h: vector in which elements are looked for
    H: sorted version of h (saves time)
    Hindx: outcome of  [hsort hidx]=sort(h);
 
  OUTPUT
    elm: returns indices >1 for each element of g which corresponds to elements of h
         returned value corresponds with FIRST occurance in h
 
  EXAMPLE
      [H,Hindx]=sort(h);
      for ...
             elm=is_in(g,[],H,Hindx)
             ..
      end
  EXAMPLE (2):copy elements from other table using key
  		[f,ok]=is_in(key1,key2)
  		attrib1(ok)=attrib2(f(ok))
 
  NOTE
      In some cases "unique" is more efficient. Example:
      INEFFICIENT CODE:
          u_nrs=unique(nrs);
          indx=is_in(nrs,u_nrss);
      EFFICIENT CODE:
          [u_nrs,dummy,indx]=unique(nrs);
 
  See also:
      ismember      (Matlab native)
      is_in         (deals with vectors)
      is_in_id      (return matched IDs instead of indices)
      is_in_find    (shell around is_in that returns, first, second, etc match)
      is_in_sort    (deals with sorted vectors)
      row_is_in     (deals with rows of a matrix)
      is_in_struct  (deals with structures)
      is_in_eq      (deals with equidistant time series)

Path:

ModelitUtilRoot

Last modified:

18-Jun-2009 12:32:31

Size:

5597 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ModelitUtilRoot>row_is_in.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ModelitUtilRoot>MBDresizedir>mbdsortframes.m
ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m
ModelitUtilRoot>diaroutines>dia_merge.m
ModelitUtilRoot>diaroutines>interp_blok.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>is_in_eq.m

(back to table of contents)
  is_in_eq - equivalent to is_in but designed for equidistant time series
  
  CALL
      function g2h=is_in(g,h)
  
  INPUT
    g: vector with equidistant time series 
    h: vector with equidistant time series 
       NOTE!!: g and h must have equal stepsizes
  
  OUTPUT
    g2h: returns indices >1 for each element of g which corresponds to elements of h
         returned value corresponds with FIRST occurance in h
  
  SEE ALSO
      is_in         (deals with vectors)
      row_is_in     (deals with rows of a matrix)
      is_in_struct  (deals with structures)
      is_in_eq      (deals with equidistant time series) 
      is_in_sort    (deals with sorted time series)
 
      findstructure (find a structure in a structure array)

Path:

ModelitUtilRoot

Last modified:

22-Sep-2004 10:16:21

Size:

2277 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ModelitUtilRoot>is_in_struct.m

(back to table of contents)
  is_in_struct - find matching elements of structure in structure array
  
  CALL
      result=is_in_struct(PatternStruct,StructArray)
  
  INPUT
      PatternStruct: structure to look for 
                     this must be a non-empty structure 
      StructArray: structure array to look in
                     this must be a structure array that has at least the
                     fields of PatternStruct
      flds: fields to compare (optional)
            default value: intersection of fields in  PatternStruct and StructArray
      
  OUTPUT
      result: 
          result(k)=0 ==> no matching structure in StructArray for PatternStruct(k)
          result(k)>0 ==> patternStruct(k) is matched by StructArray(result(k)) 
  
  NOTE
      this function has not been optimized for speed. Consider table_ismember
      for data intensive queries 
      
  SEE ALSO
      is_in         (deals with vectors)
      row_is_in     (deals with rows of a matrix)
      is_in_struct  (deals with structures)
      is_in_eq      (deals with equidistant time series) 
      is_in_sort    (deals with sorted time series)
      table_ismember   (deals with table structure)
 
      findstructure (find a structure in a structure array)

Path:

ModelitUtilRoot

Last modified:

19-Jun-2009 13:48:59

Size:

4991 bytes

Calls functions:

ModelitUtilRoot>findstructure.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m
ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>CONHOP>TestVars.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>istable.m

(back to table of contents)
  istable - check if S can be considered as a table structure
  
  CALL
      [ok,N,emsg]=istable(S)
      
  INPUT
      S: (candidate) table structure
      
  OUTPUT    
      ok  : true if S is table structure; false otherwise
      N   :  height of table
      emsg: <string> extra information if ok is false
  
  TABLE DEFINITION (added by ZIJPP 2001225)
      A table structure is a structure that meets the following conventions.
      
      - A table structure is a single structure with 0, 1 or more columns
      - If a table contains more than 1 column, all columns must be equal height
      - A column may be one ofd the following
        - a numeric or char array, including:
        - empty arrays ([0xW numeric or char])
        - vectors of NILL elements ([Hx0 numeric or char])      
      - The preferred way to initialize an empty table structure is:
        T=struct ==> T= 1x1 struct array with no fields 
      - By convention an empty scalar array or an empty struct array may be
        used to initialize an empty table structure:
        T=[] or T = struct([])
 
  KNOWN ISSUES
      tableselect removes fieldnames if all rows of a table are removed
      
  EXAMPLE
      if ~istable(S)
          error('Assertion failed: variable is not a table structure');
      end

Path:

ModelitUtilRoot

Last modified:

25-Dec-2009 16:39:03

Size:

2369 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>table>tableheight.m
ModelitUtilRoot>jacontrol>tableWindow.m

(back to table of contents)

ModelitUtilRoot>javahandle.m

(back to table of contents)
 Get handle of java object for Matlab object
  
  CALL
      h_Java=javahandle(h)
  
  INPUT
      h: Matlab hg handle (uitoolbar or figure)
      
  OUTPUT    
      h_Java: Java handle
 
  EXAMPLES
      htool=uitoolbar;
      jh=javahandle(htool);
      jh.addGap(1000);  %diveide left and right cluster
      jh.addSeparator;  %add Separator
  
      jh=javahandle(gcf);
      get(jh);     %show current properties
      methods(jh); %see what you can do with this window
      

Path:

ModelitUtilRoot

Last modified:

20-Apr-2009 11:34:47

Size:

2271 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m

(back to table of contents)

ModelitUtilRoot>load_cmp.m

(back to table of contents)
 Compileerbare vorm van 'load'
  
  CALL
    [var1,var2,... ]= load_cmp(fname,varname1,varname2,...)
        
  INPUT
    fname: naam van de mat file INCLUSIEF extensie
    varname1, varname2: naam van de variabelen in de file
 
  OUTPUT
    aanroep is equivalent aan:
      
      load(fname)
      var1=varname1
      var2=varname2
      ..
  
  SEE ALSO:
      load_var (requires Matlab V7)

Path:

ModelitUtilRoot

Last modified:

21-Nov-2005 12:00:15

Size:

3013 bytes

Calls functions:

ModelitUtilRoot>eprintf.m
ModelitUtilRoot>getMatlabVersion.m

Is called by functions:

ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>loadnnpackage.m

(back to table of contents)
  loadnnpackage - refereer naar Neural Netwerk functies die binnen Wavix
                  worden gebruikt, zodat Wavix is te compileren
  CALL:
   loadnnpackage
 
  INPUT:
   geen invoer
 
  OUTPUT:
   geen directe uitvoer, Wavix kan nu gecompileerd worden inclusief
   de neurale netwerk functionaliteiten
 

Path:

ModelitUtilRoot

Last modified:

25-Oct-2006 18:22:15

Size:

5519 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>addnntemppath.m
ApplicationRoot>WavixIV>neural501>boiler_net.m
ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>boiler_process.m
ApplicationRoot>WavixIV>neural501>boiler_transfer.m
ApplicationRoot>WavixIV>neural501>boiler_weight.m
ApplicationRoot>WavixIV>neural501>boxdist.m
ApplicationRoot>WavixIV>neural501>calca.m
ApplicationRoot>WavixIV>neural501>calca1.m
ApplicationRoot>WavixIV>neural501>calce.m
ApplicationRoot>WavixIV>neural501>calce1.m
ApplicationRoot>WavixIV>neural501>calcerr.m
ApplicationRoot>WavixIV>neural501>calcfdot.m
ApplicationRoot>WavixIV>neural501>calcgbtt.m
ApplicationRoot>WavixIV>neural501>calcgfp.m
ApplicationRoot>WavixIV>neural501>calcgrad.m
ApplicationRoot>WavixIV>neural501>calcgx.m
ApplicationRoot>WavixIV>neural501>calcjejj.m
ApplicationRoot>WavixIV>neural501>calcjx.m
ApplicationRoot>WavixIV>neural501>calcjxbt.m
ApplicationRoot>WavixIV>neural501>calcjxfp.m
ApplicationRoot>WavixIV>neural501>calcpd.m
ApplicationRoot>WavixIV>neural501>calcperf.m
ApplicationRoot>WavixIV>neural501>cliptr.m
ApplicationRoot>WavixIV>neural501>combvec.m
ApplicationRoot>WavixIV>neural501>compet.m
ApplicationRoot>WavixIV>neural501>competsl.m
ApplicationRoot>WavixIV>neural501>con2seq.m
ApplicationRoot>WavixIV>neural501>concur.m
ApplicationRoot>WavixIV>neural501>convwf.m
ApplicationRoot>WavixIV>neural501>dist.m
ApplicationRoot>WavixIV>neural501>dividevec.m
ApplicationRoot>WavixIV>neural501>dnullpf.m
ApplicationRoot>WavixIV>neural501>dnulltf.m
ApplicationRoot>WavixIV>neural501>dnullwf.m
ApplicationRoot>WavixIV>neural501>dotprod.m
ApplicationRoot>WavixIV>neural501>errsurf.m
ApplicationRoot>WavixIV>neural501>fixunknowns.m
ApplicationRoot>WavixIV>neural501>formgx.m
ApplicationRoot>WavixIV>neural501>formx.m
ApplicationRoot>WavixIV>neural501>getx.m
ApplicationRoot>WavixIV>neural501>gridtop.m
ApplicationRoot>WavixIV>neural501>hardlim.m
ApplicationRoot>WavixIV>neural501>hardlims.m
ApplicationRoot>WavixIV>neural501>hextop.m
ApplicationRoot>WavixIV>neural501>hintonw.m
ApplicationRoot>WavixIV>neural501>hintonwb.m
ApplicationRoot>WavixIV>neural501>ind2vec.m
ApplicationRoot>WavixIV>neural501>initcon.m
ApplicationRoot>WavixIV>neural501>initlay.m
ApplicationRoot>WavixIV>neural501>initnw.m
ApplicationRoot>WavixIV>neural501>initwb.m
ApplicationRoot>WavixIV>neural501>initzero.m
ApplicationRoot>WavixIV>neural501>learncon.m
ApplicationRoot>WavixIV>neural501>learngd.m
ApplicationRoot>WavixIV>neural501>learngdm.m
ApplicationRoot>WavixIV>neural501>learnh.m
ApplicationRoot>WavixIV>neural501>learnhd.m
ApplicationRoot>WavixIV>neural501>learnis.m
ApplicationRoot>WavixIV>neural501>learnk.m
ApplicationRoot>WavixIV>neural501>learnlv1.m
ApplicationRoot>WavixIV>neural501>learnlv2.m
ApplicationRoot>WavixIV>neural501>learnos.m
ApplicationRoot>WavixIV>neural501>learnp.m
ApplicationRoot>WavixIV>neural501>learnpn.m
ApplicationRoot>WavixIV>neural501>learnsom.m
ApplicationRoot>WavixIV>neural501>learnwh.m
ApplicationRoot>WavixIV>neural501>linkdist.m
ApplicationRoot>WavixIV>neural501>logsig.m
ApplicationRoot>WavixIV>neural501>mae.m
ApplicationRoot>WavixIV>neural501>mandist.m
ApplicationRoot>WavixIV>neural501>mapminmax.m
ApplicationRoot>WavixIV>neural501>mapstd.m
ApplicationRoot>WavixIV>neural501>maxlinlr.m
ApplicationRoot>WavixIV>neural501>midpoint.m
ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>mse.m
ApplicationRoot>WavixIV>neural501>msereg.m
ApplicationRoot>WavixIV>neural501>mseregec.m
ApplicationRoot>WavixIV>neural501>negdist.m
ApplicationRoot>WavixIV>neural501>netinv.m
ApplicationRoot>WavixIV>neural501>netprod.m
ApplicationRoot>WavixIV>neural501>netsum.m
ApplicationRoot>WavixIV>neural501>newc.m
ApplicationRoot>WavixIV>neural501>newcf.m
ApplicationRoot>WavixIV>neural501>newdtdnn.m
ApplicationRoot>WavixIV>neural501>newelm.m
ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>newfftd.m
ApplicationRoot>WavixIV>neural501>newgrnn.m
ApplicationRoot>WavixIV>neural501>newhop.m
ApplicationRoot>WavixIV>neural501>newlin.m
ApplicationRoot>WavixIV>neural501>newlind.m
ApplicationRoot>WavixIV>neural501>newlrn.m
ApplicationRoot>WavixIV>neural501>newlvq.m
ApplicationRoot>WavixIV>neural501>newnarx.m
ApplicationRoot>WavixIV>neural501>newnarxsp.m
ApplicationRoot>WavixIV>neural501>newnet.m
ApplicationRoot>WavixIV>neural501>newp.m
ApplicationRoot>WavixIV>neural501>newpnn.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>newrbe.m
ApplicationRoot>WavixIV>neural501>newsom.m
ApplicationRoot>WavixIV>neural501>newtr.m
ApplicationRoot>WavixIV>neural501>nncell2string.m
ApplicationRoot>WavixIV>neural501>nncheckdata.m
ApplicationRoot>WavixIV>neural501>nncheckpt.m
ApplicationRoot>WavixIV>neural501>nncopy.m
ApplicationRoot>WavixIV>neural501>nnetbhelp.m
ApplicationRoot>WavixIV>neural501>nnguitools.m
ApplicationRoot>WavixIV>neural501>nnisdata.m
ApplicationRoot>WavixIV>neural501>nnmat2string.m
ApplicationRoot>WavixIV>neural501>nnpackdata.m
ApplicationRoot>WavixIV>neural501>nnt2c.m
ApplicationRoot>WavixIV>neural501>nnt2elm.m
ApplicationRoot>WavixIV>neural501>nnt2ff.m
ApplicationRoot>WavixIV>neural501>nnt2hop.m
ApplicationRoot>WavixIV>neural501>nnt2lin.m
ApplicationRoot>WavixIV>neural501>nnt2lvq.m
ApplicationRoot>WavixIV>neural501>nnt2p.m
ApplicationRoot>WavixIV>neural501>nnt2rb.m
ApplicationRoot>WavixIV>neural501>nnt2som.m
ApplicationRoot>WavixIV>neural501>nnt_fpc2s.m
ApplicationRoot>WavixIV>neural501>nntobsf.m
ApplicationRoot>WavixIV>neural501>nntobsu.m
ApplicationRoot>WavixIV>neural501>nntwarn.m
ApplicationRoot>WavixIV>neural501>nnunpackdata.m
ApplicationRoot>WavixIV>neural501>normc.m
ApplicationRoot>WavixIV>neural501>normprod.m
ApplicationRoot>WavixIV>neural501>normr.m
ApplicationRoot>WavixIV>neural501>nullpf.m
ApplicationRoot>WavixIV>neural501>pause2.m
ApplicationRoot>WavixIV>neural501>plotbr.m
ApplicationRoot>WavixIV>neural501>plotep.m
ApplicationRoot>WavixIV>neural501>plotes.m
ApplicationRoot>WavixIV>neural501>plotpc.m
ApplicationRoot>WavixIV>neural501>plotpv.m
ApplicationRoot>WavixIV>neural501>plotsom.m
ApplicationRoot>WavixIV>neural501>plotv.m
ApplicationRoot>WavixIV>neural501>plotvec.m
ApplicationRoot>WavixIV>neural501>pnormc.m
ApplicationRoot>WavixIV>neural501>poslin.m
ApplicationRoot>WavixIV>neural501>postreg.m
ApplicationRoot>WavixIV>neural501>processpca.m
ApplicationRoot>WavixIV>neural501>purelin.m
ApplicationRoot>WavixIV>neural501>quant.m
ApplicationRoot>WavixIV>neural501>radbas.m
ApplicationRoot>WavixIV>neural501>randnc.m
ApplicationRoot>WavixIV>neural501>randnr.m
ApplicationRoot>WavixIV>neural501>rands.m
ApplicationRoot>WavixIV>neural501>randtop.m
ApplicationRoot>WavixIV>neural501>removeconstantrows.m
ApplicationRoot>WavixIV>neural501>removerows.m
ApplicationRoot>WavixIV>neural501>satlin.m
ApplicationRoot>WavixIV>neural501>satlins.m
ApplicationRoot>WavixIV>neural501>scalprod.m
ApplicationRoot>WavixIV>neural501>seq2con.m
ApplicationRoot>WavixIV>neural501>setx.m
ApplicationRoot>WavixIV>neural501>slblocks.m
ApplicationRoot>WavixIV>neural501>softmax.m
ApplicationRoot>WavixIV>neural501>sp2narx.m
ApplicationRoot>WavixIV>neural501>srchbac.m
ApplicationRoot>WavixIV>neural501>srchbre.m
ApplicationRoot>WavixIV>neural501>srchcha.m
ApplicationRoot>WavixIV>neural501>srchgol.m
ApplicationRoot>WavixIV>neural501>srchhyb.m
ApplicationRoot>WavixIV>neural501>sse.m
ApplicationRoot>WavixIV>neural501>substring.m
ApplicationRoot>WavixIV>neural501>tansig.m
ApplicationRoot>WavixIV>neural501>template_init_layer.m
ApplicationRoot>WavixIV>neural501>template_init_network.m
ApplicationRoot>WavixIV>neural501>template_init_wb.m
ApplicationRoot>WavixIV>neural501>template_learn.m
ApplicationRoot>WavixIV>neural501>template_net_input.m
ApplicationRoot>WavixIV>neural501>template_new_network.m
ApplicationRoot>WavixIV>neural501>template_performance.m
ApplicationRoot>WavixIV>neural501>template_process.m
ApplicationRoot>WavixIV>neural501>template_search.m
ApplicationRoot>WavixIV>neural501>template_topology.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>template_transfer.m
ApplicationRoot>WavixIV>neural501>template_weight.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainbr.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trains.m
ApplicationRoot>WavixIV>neural501>trainscg.m
ApplicationRoot>WavixIV>neural501>tribas.m
ApplicationRoot>WavixIV>neural501>updatenet.m
ApplicationRoot>WavixIV>neural501>vec2ind.m
ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ModelitUtilRoot>makeCharCell.mexw32

(back to table of contents)

Path:

ModelitUtilRoot

Last modified:

17-Mar-2008 18:08:03

Size:

20480 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>mbd_restore.m

(back to table of contents)
  mbd_restore - herstel interactieve status van GUI
                    interface.
 CALL
         mbd_restore(uistruct)
 
 INPUT
         uistates: structure array  = output van UISUSPEND (input voor UIRESUME)
              figureHandle : figure handle
              figsettings  : figure attributes
              children     : handles of children
              childsettings : struct array with settings
              uic_children : handle of uimenu, uicontrol and uicontext children
              uic_childsettings: struct array with settings
 
 OUTPUT
         geen
 
 OUTPUT NAAR SCHERM
         Herstel de interactieve status van GUI
         interface.
 
 APPROACH
 Herstel de interactieve status van GUI
 interface met behulp van de functie UIRESTORE en het veld
 uistruct.uistates.
 Herstel de 'enable' status van objecten uistruct.objhandles met
 behulp van het veld uistruct.uienable.
         
  See also:    MBD_SUSPEND UIRESTORE UISUSPEND

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 13:52:41

Size:

2500 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m

(back to table of contents)

ModelitUtilRoot>mbd_suspend.m

(back to table of contents)
  mbd_suspend - schort interactieve status van GUI
                    interface op.
  CALL
         uistates=mbd_suspend
  
  INPUT
         geen
  
  OUTPUT
         uistates: structure array  = output van UISUSPEND (input voor UIRESUME)
              figureHandle : figure handle
              figsettings  : figure attributes
              children     : handles of children
              childsettings : struct array with settings
              uic_children : handle of uimenu, uicontrol and uicontext children
              uic_childsettings: struct array with settings
  
  OUTPUT NAAR SCHERM
         schort interactieve status van GUI
         interface op.
  
  EXAMPLE:
          try
              %- Zet interactieve eigenschappen van applicatie uit (mbd_suspend)
              uistate=mbd_suspend;   
              
              <ACTIE>
  
          catch
              %- Actveer de interface (mbd_restore)
              mbd_restore(uistate); 
              error(lasterr);
          end
          %- Actveer de interface (mbd_restore)
          mbd_restore(uistate); 

Path:

ModelitUtilRoot

Last modified:

23-Jan-2006 01:28:46

Size:

5408 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m

(back to table of contents)

ModelitUtilRoot>mbdlabel.m

(back to table of contents)
 mbdlabel - create an interactive text label
 
 CALL
  mbdlabel(h,str,Options)
 
 INPUT
  h   : handle of object that gets an extra buttondown function
  str : pop up message
  Options: parameter value pairs
           permitted values
           show:  on {off}
                      on: activate after button press
                      button: activate now
           buttond:  {on} off
                      on: install buttondown activation
                      off: do not install buttondown activation
           mode:      {arrow} text box
                      arrow : show arrow and text
                      text  : show plain text
                      box   : show label in box
 
  NOTE
      This function can also be used to set pone label on multiple objects,
      These object then form a virtual object from the viewpoint of label
      setting
  
  EXAMPLES
    show label in box, popup now, do not set interactive props
    mbdlabel(gco,label,'mode','box','show','on','buttond','off');
    
    hide label
    mbdlabel(gco,'');

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 14:48:17

Size:

7288 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>PublicFiles>plot_geo.m

(back to table of contents)

ModelitUtilRoot>mbdparse.m

(back to table of contents)
  mbdparse - parse user input
 
  CALL
      mbddisplay(h,val);
          display argument "val" in object "h"
      [val,ok]=mbdparse
      [val,ok]=mbdparse(h)
          retrieve argument "val" from object "h"
          check validity of input
 
  INPUT
      h: uicontrol or jacontrol handle
      value: value to display in field (typically used at installation)
 
  INDIRECT INPUT
      opt=getappdata(h,'opt')
          application data for this object
 
  SUPPORTED OPTIONS:
      opt.dealwith : function that replaces mbdparse entirely
                       DEFAULTVALUE: opt.dealwith  ='';
      opt.format   : format string for reading
                     (not required if 'dealwith' or 'type' specified)
                     NOTE: do not use '%.f' or similar for reading, use '%f' instead
                           if formatting is required specify opt.displayformat='%.2f'
                       DEFAULTVALUE: opt.format    ='';
      opt.type     : type of field
                     (not required if 'dealwith' or 'format' specified)
          int      : integers
          double   : doubles
          str      : str
          url      : url (e.g. http://www.modelit.nl)
          filename : str (opt.filter)
          directory: str
          date     : date dd/mm/yyyy  mm/yyyy or yyyy
          ddmmm    : date dd/mm/yyyy  dd/mmm or mmm
          time     : HH:MM
                       DEFAULTVALUE: opt.type      ='';
      opt.multiple : allow entering multiple values separated by ; or space (default 0)
                     works for type = int,double not tested for
                     other types
      opt.required : forced field (empty not allowed)
                       DEFAULTVALUE: opt.required  =0;
      opt.emptywarn: warning to be provided when emptystring is
                     encountered
                       DEFAULTVALUE: opt.emptywarn ='Empty input not allowed for this field';
      opt.emptystr : string that is displayed when field is empty
                       DEFAULTVALUE: opt.emptystr ='';
      opt.filter   : filter applicable when opt.type == filename
                       DEFAULTVALUE: opt.filter    ='*';
      opt.prefdir   : tag to be passed to defaultpath
                       DEFAULTVALUE: opt.prefdir    =1001;
      opt.exist    : if 1 (or not specified) check existence of file or directory
                       DEFAULTVALUE: opt.exist     =1;
      opt.minimum  : minimum value (== is allowed)
                       DEFAULTVALUE: opt.minimum   = -inf;
      opt.minstr   : message if value too low
                       DEFAULTVALUE: opt.minstr    ='Value too low';
      opt.maximum  : maximum value (== is allowed)
                       DEFAULTVALUE: opt.maximum   = inf;
      opt.maxstr   : message if value too high
                       DEFAULTVALUE: opt.maxstr    ='Value too high';
      opt.oldvalue : previous value (to be restored if new value is incorrect)
                       DEFAULTVALUE: opt.oldvalue  =[];
      opt.displayformat : format string for displaying
                       DEFAULTVALUE: opt.displayformat='';
      opt.compact:   works for type=filename
      opt.settooltip: copy string into tooltip (for display of
                     long strings in small fields)
                       DEFAULTVALUE: opt.settooltip=0;
      opt.codeword:  (Only applicable if opt.type==filename)
                     accept this codewords even if they do not
                     match with filename
                       DEFAULTVALUE: {} (empty cell array)
                       EXAMPLES: opt.codeword='<NO SELECTION>'
                               opt.codeword={'<NO SELECTION>','<ALL FILES>'}
      opt.parent:    get options from specified parent
 
  OUTPUT
    val: value entered by user
    ok : ok==1 if value is succesfully entered
 
  EXAMPLE
      figure
      h=uicontrol('style','edit','str','20','callb',{@mbdparse,1});
      opt=struct('type','int',...
          'minimum',0,...
          'minstr','value to low',...
          'maximum',100,...
          'maxstr','value to high',...
          'compact',0,...
          'oldvalue',50,...
          'required',1,...
          'feedback',1);
      setappdata(h,'opt',opt);
      mbdparse(h)
 
 See also: 
      val=mbdparsevalue
      www.modelit.nl/modelit/matlabnotes/mbdparse-dropdown.pdf

Path:

ModelitUtilRoot

Last modified:

12-Sep-2010 19:08:12

Size:

30885 bytes

Calls functions:

ModelitUtilRoot>copystructure.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>getyear.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>uigetfolder.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>mbdparsevalue.m

(back to table of contents)
  mbdparsevalue - converteer ingevoerde data in edit field
  
  CALL
      val=mbdparsevalue(h)
      
  INPUT
      h: handle van object
      opt.oldvalue : previous value (to be restored if new value is incorrect)
  
  OUTPUT
    val: value entered by user
 
 SEE ALSO: mbdparse

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 14:05:56

Size:

371 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>select_interval.m

(back to table of contents)

ModelitUtilRoot>mexprint.m

(back to table of contents)
  mexprint - mex version of print
  
  USE
    shield print command from mcc -x -h command
    
    1. compile mexprint.m mcc -x mexprint (produces mexprint.dll)
    2. replace print with mexprint in all m files
    3. compile application with mcc -x -h application mexprint.dll

Path:

ModelitUtilRoot

Last modified:

03-Jul-2003 11:50:20

Size:

339 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>print2file.m

(back to table of contents)

ModelitUtilRoot>movegui_align.m

(back to table of contents)
 movegui_align - similar to MOVEGUI but position figure relative to other
                figure instead of position on screen. Treat other window as
                scree area
  CALL
      movegui_align(fig,hrelfig,position)
  
  INPUT
      fig:     Handle of figure that is to be moved
      hrelfig: Position relative to this object. Possible values
               Figure handle
               "pointer" position relative to pointer
      position: way of positioning    
                 The POSITION argument can be any one of the strings:
                  'north'     - top center edge of screen
                  'south'     - bottom center edge of screen
                  'east'      - right center edge of screen
                  'west'      - left center edge of screen
                  'northeast' - top right corner of screen
                  'northwest' - top left corner of screen
                  'southeast' - bottom right corner of screen
                  'southwest' - bottom left corner of screen
                  'center'    - center of screen
                  'onscreen'  - nearest onscreen location to current position.
                  'pointer'  - nearest onscreen location to current position.
  
  EXAMPLE:
      movegui_align(gcf,'pointer','northwest'),movegui(gcf,'onscreen');
  
  See also: movegui

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 10:07:18

Size:

4580 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>msg_temp.m

(back to table of contents)
 msg_temp - display  message that goes away after a few second
 
 INPUT/OUTPUT: see warndlg

Path:

ModelitUtilRoot

Last modified:

27-Nov-2008 10:16:22

Size:

1200 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m

(back to table of contents)

ModelitUtilRoot>multiwaitbar.m

(back to table of contents)
  multiwaitbar - plot one or more waitbars in a unique figure
 
  CALL:
   HWIN = multiwaitbar(bartag,x,wbtext,varargin)    
   HWIN = multiwaitbar(bartag,x,wbtext,'stopb','abort',varargin)    
   HWIN = multiwaitbar(bartag,x,wbtext,'suspb','abort',varargin)    
   HWIN = multiwaitbar(bartag,x)
   HWIN = multiwaitbar(bartag,-1)
  
  INPUT:
    bartag:    <string> signature of waitbar
    x:         <double> progress (in % ==> range = 0-100)
                        Note: set x to NaN for indefinite waitbar
    wbtext:    <string> text above waitbar
                        Note: the space reserve for this text is determined 
                              at startup of waitbar
    varargin:  <varargin{:}> properties to be passed on to the "figure" command (has no
                             effect when figure already exists)
               SPECIAL KEYWORDS:
                  - " 'stepsize',5"     changes default stepsize to 5. Aall
                                        calls will be ignored, unless
                                        rem(x,5)==0.
                  - " 'stopb','abort' " adds a stopbutton with text 'abort' 
                  - " 'suspb','abort' " adds a suspend button with text
                                       'abort' this works together with
                                       function "stopwaitbar"
               NOTE: the arguments passed in "varargin" are only used when
               the waitbar is created. In other words: these arguments can
               not be used to change an existing waitbar figure.
 
  OUTPUT:
   HWIN:       <handle> of the figure with the waitbar(s)
 
  SHORT EXAMPLE: multiwaitbar('uniqueTag',10,'10%','name','example')
 
  EXAMPLE:
    hwait=multiwaitbar('loop1',0,'','name','Check');
    for k=1:10
        multiwaitbar('loop1',10*k,sprintf('k=%d',k));
        for r=1:5:100
            if stopwaitbar(hwait),return;end
            multiwaitbar('loop2',r,sprintf('r=%d',r));
            pause(0.01)
        end
    end
    multiwaitbar('loop1',-1);        
    multiwaitbar('loop2',-1);
 
  See also:
      stopwaitbar
      closewaitbar

Path:

ModelitUtilRoot

Last modified:

05-May-2010 14:58:35

Size:

12871 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>stopwaitbar.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ModelitUtilRoot>table>structarray2table.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>SimulNN.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>name.m

(back to table of contents)
  name - set title of current figure to specified value
  CALL
      name(nme)
      
  INPUT
      nme: name of figure
      
  OUTPUT
      This function returns no output arguments

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 14:36:25

Size:

239 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>neural501>boiler_net.m
ApplicationRoot>WavixIV>neural501>boiler_perform.m
ApplicationRoot>WavixIV>neural501>boiler_process.m
ApplicationRoot>WavixIV>neural501>boiler_transfer.m
ApplicationRoot>WavixIV>neural501>boiler_weight.m

(back to table of contents)

ModelitUtilRoot>offon.m

(back to table of contents)
  offon - replace 0 with 'off' and 1 with 'on'
  
  CALL:
   val = offon(val)
  
  INPUT:
   val: 0,1 or character string
      
  OUTPUT:
   val: string, possible values: 'off' or 'on'

Path:

ModelitUtilRoot

Last modified:

13-Apr-2009 12:04:26

Size:

362 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)

ModelitUtilRoot>patchvalue.m

(back to table of contents)
  patchvalue - callback for interactive patch labels
  
  CALL
      patchvalue(obj,event,varargin)
  
  INPUT
      obj   : object that is clicked on
      event : not used
      varargin: <attribute,value> pairs
                
        Table of valid attributes
        ATTRIBUTE       DEFAULT      ACCEPTED VALUES          
        zdata           []           numeric, char or struct arrays The
                                     size should correspond to xdata,
                                     meaning that if xdata is MxN
                                     zdata can either be MxN, 1xN or 1x1
                                     (if numeric) or zdata can be NxP or 1xP (if
                                     chararchter) or zdata can be
                                     If zdata is a structure array, a parse
                                     function must be specified
        textoptions     arial,bold   valid text options       
                               NOTE: These options will be passed on to text object
        labeltag        GRIDLABEL    tag attached to labels   
                               NOTE: this tag is needed to remove the
                                     object (overides textoptions
                                     property)
        format          %.0f         format string for plotting numeric values
                               NOTE: this property is used when
                                     datatype is double
        datatype        double       date or double
                               NOTE: use this option to display date
                                     labels
        parsefunction   []           any function pointer %function used to parse results
                               NOTE:  use this option none of the above
                                     works. The function will be called
                                     with one argument (the selected
                                     zvalue)
        selectmode      first        first or all     
                               NOTE: when this option is selected the
                                     search for a valid patch will stop as
                                     soon as one is found. This speeds up
                                     the proces but may not be what you
                                     want if patches overlap
        labellocation   center       center or pointer
                               NOTE: by default labels are plotted in the
                                     center of each patch. alternatively they may
                                     be plotted at the point where the user
                                     clicks
  
  OUTPUT
      This function returns no output arguments
 
  EXAMPLE
  	h_patch=patch(X,Y,Z,'facec','r','buttond',@patchvalue);
  	setappdata(h_patch,'datatype','date'); (optional defaults to "double")
  	setappdata(h_patch,'zdata',sqrt(Z));   (optional defaults to zdata from patch)
  
    h_patch=patch(X,Y,Z,'buttond',{@patchvalue,'%.0f','center','SWANLABEL'},'parent',h_kaart); 
    ...
    delete(findobj('tag','SWANLABEL'); %this removes the labels for this patch
                                        while leaving other labels intact

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 16:53:44

Size:

8110 bytes

Calls functions:

ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>showbar.m
ApplicationRoot>wavixIV>NETWERKBEHEER>hinton.m

(back to table of contents)

ModelitUtilRoot>pathcomplete.m

(back to table of contents)
  pathcomplete - extend filename with path
  
  CALL
    pnamefname=pathcomplete(CurrentPath,fname)
  
  IMPUT
    fname : filename (possibly includes path)
    
  OUTPUT
    CurrentPath
    pnamefname

Path:

ModelitUtilRoot

Last modified:

28-Apr-2003 14:21:09

Size:

427 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>docutool>show.m

(back to table of contents)

ModelitUtilRoot>pcolorBar.m

(back to table of contents)
  pcolorBar - plot vector as a collection of colored boxes 
  
  CALL:
   h = pcolorPlot(X, Y, varargin)
  
  INPUT:
   X:        vector met xdata
   Y:        matrix met data to plot against xdata
   varargin: <parameter-value  pairs)
                'xax' - <vector> indicating edges of boxes, length is
                        size(data,2) + 1
                'yticks' - <cellstring> specifies the yticks, length is
                           size(data,1);
  OUTPUT:
   h: <matrix> with patchhandles
 
  See also: pcolor

Path:

ModelitUtilRoot

Last modified:

22-Nov-2007 04:13:12

Size:

1858 bytes

Calls functions:

ModelitUtilRoot>aggBins.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>pcolorPlot.m

(back to table of contents)

ModelitUtilRoot>pcolorPlot.m

(back to table of contents)
  pcolorPlot - plot matrix as a collection of colored boxes 
  
  CALL:
   pcolorPlot(X, Y, varargin)
  
  INPUT:
   X:        vector met xdata
   Y:        matrix met data to plot against xdata
   varargin: <parameter-value  pairs)
                'xax' - <vector> indicating edges of boxes, length is
                        size(data,2) + 1
                'yticks' - <cellstring> specifies the yticks, length is
                           size(data,1);
  OUTPUT:
   geen uitvoer
 
  See also: pcolor, pcolorBar

Path:

ModelitUtilRoot

Last modified:

27-Mar-2008 11:09:32

Size:

2164 bytes

Calls functions:

ModelitUtilRoot>pcolorBar.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>points2pixels.m

(back to table of contents)
  points2pixels - short hand for converting points to pixels
  
  CALL
      pixels = points2pixels(points)
      
  INPUT
      points: <double>
          position in points
          
  OUTPUT
      points: <double>
          position in pixels

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 12:15:59

Size:

420 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m

(back to table of contents)

ModelitUtilRoot>postcode2pos.m

(back to table of contents)
   postcode2pos - return WGS position from Dutch Zip code
   
  CALL
      [pos,adress,msg]=postcode2pos(PC)
      
  INPUT
      PC : 4 digit or 6 digit dutch Zip code
 
  OUTPUT
      pos    : [Longitude, Latitude] !!! note that Longitude comes first !!
      adress : PC, City (State) Country
      msg    : error message if applicable (empty==> no error)
  
  EXAMPLE
      Verification:
      Rotterdam is a city in Zuid-Holland at latitude 51.923, longitude 4.478.
      postcode2pos('3042as')==> pos= [4.4294   51.9344]

Path:

ModelitUtilRoot

Last modified:

19-Oct-2009 23:42:00

Size:

8274 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>RWSnat>CrdCnv.m

(back to table of contents)

ModelitUtilRoot>print2file.m

(back to table of contents)
  print2file - start GUI for exporting graph
  
  CALL:
   HWIN = print2file
   HWIN = print2file(hfig)
   HWIN = print2file(obj, event, hfig, varargin)
  
  INPUT:
   obj,event: standard Matlab callback arguments
   hfig:      handle of figure for which to create plot
   varargin:  property value pairs. Accepted property names:
              PROPERTY       {DEFAULT}
                language     {'dutch'} 'english';
                constants    {[]};  
                visible      {true} false;
      
  OUTPUT:
   HWIN: handle of GUI figure
  
  EXAMPLE:
   uimenu(hFile,'label','Print figure','callback',@print2file);
  
  See also: print2file_Execute

Path:

ModelitUtilRoot

Last modified:

10-Mar-2010 16:20:52

Size:

32709 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>mexprint.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>strvscat.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ModelitUtilRoot>pshape.m

(back to table of contents)
  pshape - provide cursor for used in zoomtool
  
  CALL
      shape=pshape
      
  INPUT
      1 input argument allowed, no input arguments used 
      
  OUTPUT
      pshape
          16*16 array that can be used as cursor
  
  EXAMPLE
      set(gcf,'pointershapecdata',pshape);
  
  See also: zoomtool

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 11:19:04

Size:

1592 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>zoomtool.m

(back to table of contents)

ModelitUtilRoot>putfile.m

(back to table of contents)
  putfile - return file with specific extension from default directory
  
 CALL
         [fname,pname]=putfile(ext,showstr,BATCHMODE,fname,tag)
 
 INPUT
         ext       : extension of file to be selected
                     (defaultwaarde: '.m')
         showstr   : Text above figure
                     (defaultwaarde: '')
         BATCHMODE : if true: suppress any interaction
                     (defaults to 0)
         fname     : default filename
                     (defaults to *.ext)
         tag       : tag for category of file. See defaultpathNew. Can be
                     integer or string.
                     (defaults to 1)
 OUTPUT
         fname : de geselecteerde filenaam, of 0
                 LET OP!: fname==0 en niet fname='' staat voor cancel!!
         pname : het bijbehorende pad
         
 USER INPUT
         gebruiker selecteert filenaam
 
  EXAMPLE (1)
      [fname,pname]=putfile('txt','Save ASCII file',0,'MyFile','AsciiDump');
      if ~fname
          return
      end
      fname=[pname fname];
      .. 
 See also: UIPUTFILE PUTFILE    

Path:

ModelitUtilRoot

Last modified:

02-Jun-2010 15:38:26

Size:

3374 bytes

Calls functions:

ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>extensie.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ModelitUtilRoot>rbline.m

(back to table of contents)
 select range than execute Commanstr
  
  CALL
      rbline('hor')
      rbline(1,CommandStr)
  
  INPUT
      arg1: mode of operation
      CommandStr: cell array:
                  {FuncPonter, arg1,arg2,...}
      
  OUTPUT
      no direct output: Function Commandstr is called with srange(1) and xrange(2)
      

Path:

ModelitUtilRoot

Last modified:

16-Mar-2010 13:55:00

Size:

3325 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ModelitUtilRoot>rbline2.m

(back to table of contents)
  rbline2 - select range than execute Commanstr
  
  CALL
      rbline2('hor')
      rbline2(1,CommandStr)
  
  INPUT
      attribute value pairs:
 
  ATTRIBUTE  DEFAULT IMPACT
  axes       gca     axes to display in
  callback   none    function to call when interval has been selected
                     this function will be called in the following way:
                     fpointer(obj,event,x1,x2)
 
  REMARK
      cursor position is retreived from current axes
 
  OUTPUT
      no direct output: Function Commandstr is called with srange(1) and xrange(2)
 

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 16:18:20

Size:

6317 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ModelitUtilRoot>readComments.m

(back to table of contents)
  readComments - similar to help but returns a cell array with help
  
  CALL:
   C = readComments(filename, comment)
  
  INPUT:
   filename: <string> 
   comment: <character>, default value: '%'
  
  OUTPUT:
   C: <cell array> 
  
  See also: help

Path:

ModelitUtilRoot

Last modified:

25-Aug-2009 17:58:32

Size:

997 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)

ModelitUtilRoot>readcell.m

(back to table of contents)
  readcell - lees character array weg van file
  
  CALL:
   strs = readcell(fname, n)
  
  INPUT:
   fname: in te lezen file
   n:     aantal te lezen regels 
  
  OUTPUT:
   str:
    
  See also: writestr, readstr

Path:

ModelitUtilRoot

Last modified:

27-Mar-2008 14:10:26

Size:

549 bytes

Calls functions:

ModelitUtilRoot>eprintf.m

Is called by functions:

ModelitUtilRoot>installjar.m
ModelitUtilRoot>table>tableRead.m

(back to table of contents)

ModelitUtilRoot>readstr.m

(back to table of contents)
  readstr - lees character array weg van file
  
  CALL:
   readstr(fname, n, decomment)
  
  INPUT:
   fname:     in te lezen file
   n:         aantal te lezen regels 
   decomment: if true do not return commented lines
  
  OUTPUT:
   str: string met bestandsinhoud
    
  See also: writestr, readcell

Path:

ModelitUtilRoot

Last modified:

24-Jan-2008 10:06:36

Size:

1959 bytes

Calls functions:

ModelitUtilRoot>decomment_line.m
ModelitUtilRoot>eprintf.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m

(back to table of contents)

ModelitUtilRoot>real2str.m

(back to table of contents)
  real2str - print real data in columns
  
  SUMMARY
      real2str is equivalent to num2str but much faster
  
  CALL
      [str,W]=real2str(X,N)
      
  INPUT
      X: vector or matrix
      N: number of digits after comma
  
  OUTPUT
      str: output string
      W: Width of each column
 
 See also: vec2str

Path:

ModelitUtilRoot

Last modified:

27-Feb-2009 12:42:13

Size:

2565 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ModelitUtilRoot>struct2str.m
ModelitUtilRoot>transact_update.m

(back to table of contents)

ModelitUtilRoot>rightalign.m

(back to table of contents)
  rightalign - make right aligned header of exactly N positions
  
  CALL
      RA_header=rightalign(LA_header,N)
  
  INPUT
      LA_header : Left aligned string NOTE!! vectorized input is supported
      N         : Number of digits required
      
  OUTPUT
      RA-header : Right aligned header
  
  EXAMPLE
      [str,N]=real2str(1000*rand(5,2));
      la_hdr=strvcat('col1','col2');
      hdr=rightalign(la_hdr,N);
      disp(hdr);
      disp(str);
  
  SEE ALSO
      leftalign

Path:

ModelitUtilRoot

Last modified:

02-Nov-2004 18:57:33

Size:

1212 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>transact_update.m

(back to table of contents)

ModelitUtilRoot>rmfiles.m

(back to table of contents)
   rmfiles - remove files/directories (for safety the full path must be
             specified)
  
  CALL:
   rmfiles(files)
  
  INPUT:
   files: <cellstr> with filenames
          <chararray> with filenames
  
  OUTPUT:
   none, the specified files/directories are deleted 
  
  See also: rmdir, delete

Path:

ModelitUtilRoot

Last modified:

27-Sep-2006 09:53:24

Size:

1659 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m

(back to table of contents)

ModelitUtilRoot>row_is_in.m

(back to table of contents)
  row_is_in - recognize rows of matrix A in matrix B (and vice versa)
  
  CALL:
   [A2B,B2A]=row_is_in(A,B,Aunique)
 
  INPUT:
   A,B: matrices
   Aunique: set this argument to 1 if A consists of unique rows
 
  OUTPUT:
   A2B: vector with length= size(A,1)
        if A2B(i)~=0:  A(i,:) == B(A2B(i,:))
   B2A: vector with length= size(B,1)
        if B2A(i)~=0:  B(i,:) == A(B2A(i,:))
 
  REMARKS
  	returns indices >1 for each element of A which corresponds to elements of B
  	returned value corresponds with FIRST occurrance in B
 
  NOTE
      In some cases "unique" is more efficient. Example:
      INEFFICIENT CODE:
          u_rows=unique(strs,'rows');
          indx=row_is_in(strs,u_rows);
      EFFICIENT CODE:
          [u_rows,dummy,indx]=unique(strs,'rows');
  
  See also
      is_in         (deals with vectors)
      row_is_in     (deals with rows of a matrix)
      is_in_struct  (deals with structures)
      is_in_eq      (deals with equidistant time series)
      is_in_sort    (deals with sorted time series)
      strCompare
      unique

Path:

ModelitUtilRoot

Last modified:

18-Jun-2009 11:25:17

Size:

4852 bytes

Calls functions:

ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>copystructure.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>GetSensorMatrix.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>runlength.m

(back to table of contents)
  runlength - determine the runlength of values in a vector
  
  CALL:
   [len val] = runlength(x)
  
  INPUT:
   x: <vector of double>
  
  OUTPUT:
   len: <vector of integer> number of consecutive repetitions of value
   val: <vector of double> value
  
  See also: invrunlength

Path:

ModelitUtilRoot

Last modified:

20-Oct-2007 12:04:06

Size:

427 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>aggBins.m

(back to table of contents)

ModelitUtilRoot>selectdate.m

(back to table of contents)
  selectdate - select date by clicking on calender
 
  CALL
  	[date,rc]=selectdate(datenr)
    [date,rc]=selectdate
  
  INPUT
      datenr: initial date valaue (defaults to today)
  
  OUTPUT
      datenr: selected date value (empty if cancel)
 
  SEE ALSO
      dateselector

Path:

ModelitUtilRoot

Last modified:

11-Oct-2005 09:40:50

Size:

3735 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>get_c_default.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>movegui_align.m

Is called by functions:

ModelitUtilRoot>mbdparse.m

(back to table of contents)

ModelitUtilRoot>selectdir.m

(back to table of contents)
  selectdir - Open the directory selector and wait for user reply
 
  CALL:
      pth = selectdir(obj,event,curdir,N)
      pth = selectdir(obj,event,curdir)
      pth = selectdir(obj,event)
 
  INPUT:
      obj,event: not used
      curdir:  (string) initial directory. If curdir is not a valid directory, pwd
               will be assumed
      N: (integer) directoryTypeIdentifier. This number will be used to retreive and
         store the history of selected directories
 
  OUTPUT:
      pth: -1- if not empty: the name of a directory of which its existence has
               been verified.
           -2- NOTE: pth includes the "\" sign at the end
           -3- empty if user has cancelled.
           -4- When a directory is succesfully selected, selectdir issues a
               call to defaultpath using directoryTypeIdentifier N. The
               next time the directory selector opens this directory is
               presented as one of the alternatives.
  
  SEE ALSO: defaultpath

Path:

ModelitUtilRoot

Last modified:

21-Feb-2010 15:40:15

Size:

8315 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>movegui_align.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m

Is called by functions:

ModelitUtilRoot>mbdparse.m

(back to table of contents)

ModelitUtilRoot>setMouseWheel.m

(back to table of contents)
  setMouseWheel - set callback for mouseWheel for figure
  
  CALL
      setMouseWheel(fcn)
      setMouseWheel(fcn,HWIN)
      
  INPUT
      fcn: calbback function 
      HWIN: handle of figure
  
  Nanne van der Zijpp
  Modelit
  www.modelit.nl

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 21:30:04

Size:

3569 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>getFigureClientBase.m
ModelitUtilRoot>getMatlabVersion.m
ModelitUtilRoot>getRootPane.m
ModelitUtilRoot>zoomtool.m

Is called by functions:

ModelitUtilRoot>zoomtool.m

(back to table of contents)

ModelitUtilRoot>setPassive.m

(back to table of contents)
  setPassive - communicate with server in "passive" mode, even if this is
  not the server's default. Some DSL modums do not support the active ftp
  mode
  
  CALL
      setPassive(ftpobj)
      
  INPUT
      ftpobj <class ftp>:
          ftp connection
          
  OUTPUT
      This function returns no output arguments

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 11:10:26

Size:

472 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>setProxy.m

(back to table of contents)
  setProxy -  stel proxy settings in
 
  CALL:
   setProxy(proxyadres, proxypoort)
  
  INPUT:
   proxyadres: <string> adres van de proxyserver
   proxypoort: <integer> poortnummer
                    
  OUTPUT:
   geen uitvoer
  
  APPROACH:
   als proxyadres en proxyadres leeg zijn wordt de proxy uitgeschakeld
  
  See also: urlread, urlwrite, getProxy

Path:

ModelitUtilRoot

Last modified:

13-Jul-2007 10:51:30

Size:

725 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>urlproxyread.m

(back to table of contents)

ModelitUtilRoot>seticon.m

(back to table of contents)
  seticon - change the icon of a matlab figure
  
 CALL
      seticon(HWIN,iconfile): 
          set icon of HWIN to data in file "iconfile". Supported file
          formats: PNG, GIF, BMP,ICO (only GIF and PNG support transparancy
          data). This is the most common way to call seticon.
  
      seticon(HWIN): 
          set icon of HWIN to previously used value
      seticon:
          set icon of current window to previously used value
      seticon(HWIN,cdata): 
          set icon of HWIN to cdata.
          Note: cdata is not "remembered" so a next call to seticon without
          arguments will NOT reproduce this icon  
      seticon(HWIN,X,MAP):    
          set icon of HWIN to [X,map] 
          Note: [X,map] is not "remembered" so a next call to seticon
          without arguments will NOT reproduce this icon  
      seticon(0)
          Reset persistent icon (do not update figure)
  
  INPUT
      HWIN:
          figure to operate on
      iconfile:
          file to read icon from
      cdata:
          truecolor image        
      [X,map]:
          indexed image
          
  OUTPUT
      This function returns no output arguments
      
  NOTES
      On windows, best results are obtained when using bitmaps of 16 x 16 pixels 
      When transparant icons are required, use a GIF or PNG format
 
      This version has been tested with Matlab 7.0, 7.01 and 7.04 and the
      corresponding Matlab Compilers (see Details below)
 
  LIMITATIONS
      In Matlab version 7.04, seticon has no effect on figures for which the
      attribute 'visibility' is set to 'off'.  It is expected that this problem
      can be solved in a later version. In earlier Matlab versions this problem does not occur. 
      To obtain optimal results across versions one may invoke seticon twice, see
      example below.
      NOTE August 5 2005: the problems seems to be solved by introducing  a
                          timer that tries untill the window becomes
                          visible
  
  EXAMPLE(1): set icon on 1 window
        HWIN=figure('vis','off') %hide window while construction is in progress
        seticon(HWIN,'modelit.png');  % (typical for Matlab v7.0/v7.01)
        <create graphs and uicontrols>
        set(HWIN,'vis','on');
        drawnow;       %<< (only required for Matlab v7.04)
        seticon(HWIN); %<< (only required for Matlab v7.04)
 
  EXAMPLE(2): set icon on each future window
        set(0,'DefaultFigureCreateFcn',@modelitIcon)
        function modelitIcon(obj,event)
        seticon(obj,'modelit.png');
  
  COMPATIBILTY NOTE
      The behaviour of seticon may change when new Java or Matlab versions
      are installed. The Seticon utility relies on some undocumented Matlab
      features that may change or disappear in future Matlab versions. It
      is expected that seticon can be adapted to such changes. However no
      guarantees of whatever kind are given that a seticon version will be
      available for Matlab versions beyond 7.04. 
  
  See also:   imread, icon2png

Path:

ModelitUtilRoot

Last modified:

17-Apr-2009 10:33:16

Size:

10715 bytes

Calls functions:

ModelitUtilRoot>getMatlabVersion.m

Is called by functions:

ApplicationRoot>WavixIV>wavix.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>shiftup.m

(back to table of contents)
  shiftup(hfig) - move window with multiple of its size
  
  SUMMARY 
      This function is typically used to place a second waibar directly
      above the first one. Note that nowadays multiwaitbar is available for
      displaying stacked waitbars.
  
  CALL:
      shiftup(hfig,direction)
  	
  INPUT:	
   hfig:      figure handle
   direction: [vertical,horizontal] movement
              default: [1,0]
  
  OUTPUT:
   This function returns no output arguments
  
  See also: multiwaitbar

Path:

ModelitUtilRoot

Last modified:

29-Sep-2009 17:38:02

Size:

772 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ModelitUtilRoot>slashpad.m

(back to table of contents)
  slashpad - complement path with filesep symbol
  
  CALL
      str=slashpad(str)
      
  INPUT
      str: filename
      
  OUTPUT
      setr: filename appended with file separator

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 13:03:27

Size:

357 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>defaultpathNew.m

(back to table of contents)

ModelitUtilRoot>stopwaitbar.m

(back to table of contents)
  waitstatus - return false if waitbar has been removed or stopped
 
  CALL:
   stop = stopwaitbar(HWIN)
  
  INPUT:
      HWIN:  <handle> of the figure with the waitbar(s)
             HWIN==-1: ignore mode
  
  OUTPUT
      stop: TRUE  ==> stop
            FALSE ==> continue
 
  EXAMPLE:
    for k=1:10
        hwait=multiwaitbar('loop1',10*k,sprintf('k=%d',k));
        for r=1:5:100
            if stopwaitbar(hwait),return;end
            multiwaitbar('loop2',r,sprintf('r=%d',r));
            pause(0.01)
        end
    end
    multiwaitbar('loop1',-1);        
    multiwaitbar('loop2',-1);
 
  See also
      multiwaitbar
      closewaitbar

Path:

ModelitUtilRoot

Last modified:

07-Oct-2008 09:55:05

Size:

920 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>str2fieldname.m

(back to table of contents)
  convert string to fieldname that can be used in Matlab structure

Path:

ModelitUtilRoot

Last modified:

21-Feb-2006 13:10:21

Size:

554 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>defaultpathNew.m

(back to table of contents)

ModelitUtilRoot>strcol.m

(back to table of contents)
  strcol - display string in columns, so that maximum number of rows is not
           exceeded
 
  CALL
      A=strcol(strs,nRowMax,sepstr)
      
  INPUT
      strs   : char array to display
      nRowMax: maximum acceptable number of rows
      sepstr : separator string between columns
  
  OUTPUT
      A: strs formatted in columns
  
  EXAMPLE
        s=dir;
        disp(strcol(char(s.name),5,' '))

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 16:26:38

Size:

808 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m

(back to table of contents)

ModelitUtilRoot>struct2cellstr.m

(back to table of contents)
  struct2cellstr - converteer structure naar een cellarray met strings
  
  CALL:
   C = struct2cellstr(S, fields)
  
  INPUT:
   S: structure
   C: (optioneel) cellstr met te gebruiken velden
  
  OUTPUT:
   C: cell array met in kolom 1 de veldnamen en
                        kolom 2 de waarden als string, omgezet met toStr
  
  See also: toStr

Path:

ModelitUtilRoot

Last modified:

20-Jan-2008 11:32:34

Size:

550 bytes

Calls functions:

ModelitUtilRoot>toStr.m

Is called by functions:

ModelitUtilRoot>struct2char.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m

(back to table of contents)

ModelitUtilRoot>struct2char.m

(back to table of contents)
  struct2char - convert single structure to horizontally concatinated char 
                array
  
  CALL:
   report = struct2char(S, flds)
  
  INPUT:
   S: structure
   flds: cell array of fields to display
      
  OUTPUT:
   report : string to display
  
  See also: rightalign, struct2str

Path:

ModelitUtilRoot

Last modified:

20-Jan-2008 11:29:20

Size:

883 bytes

Calls functions:

ModelitUtilRoot>struct2cellstr.m
ModelitUtilRoot>strvscat.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ModelitUtilRoot>struct2str.m

(back to table of contents)
  struct2str - convert struct or structarray to vertically concatenated 
               table
  
  CALL
       [str,hstr,colw] = struct2str(S,flds)
       
  INPUT:
   S: structure array
   flds: cell array of fields to display
      
  OUTPUT:
   str  : string to display
   hstr : table with column content labels
   colw : width of each column
  
  EXAMPLE:
   [str,hstr,colw]=struct2str(S);
   headers=strvcat(....) %specify headers
   titlestr=rightalign(headers,colw)   
  
  See also:  rightalign, structarray2dlm, struct2char, structarray2table
             table2structarray  

Path:

ModelitUtilRoot

Last modified:

11-Sep-2009 11:25:39

Size:

1421 bytes

Calls functions:

ModelitUtilRoot>real2str.m
ModelitUtilRoot>strvscat.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m

(back to table of contents)

ModelitUtilRoot>struct2treemodel.m

(back to table of contents)
  struct2treemodel - fast way to convert structure to treemodel
  
  CALL:
   model = struct2treemodel(S, model, parent)
  
  INPUT:
     S:
         array of structures
     model:
          paramter that can be passed to jacontrol with style JXTable
     parent:
          initial parent
  
  OUTPUT:
     model:
          paramter that can be passed to jacontrol with style JXTable
  
  EXAMPLE
      [table h] = jacontrol('style','JXTable',...
          'scrollb',true,...
          'ColumnControlVisible',true,...
          'SelectionMode',3,...
          'showgrid','none');
       set(table,'Content',struct2treemodel(S));

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 13:52:44

Size:

1722 bytes

Calls functions:

ModelitUtilRoot>toStr.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>tableWindow.m

(back to table of contents)

ModelitUtilRoot>struct2varargin.m

(back to table of contents)
  struct2varargin - vorm structure om naar parameter/value paren,
                    parameter namen zijn de veldnamen, values zijn de 
                    bij deze velden horende waarden.
  
  CALL:
   args = struct2varargin(S)
  
  INPUT:
   S: <struct> om te vormen structure
  
  OUTPUT:
   args: <cell array> met parameter/value paren
  
  See also: varargin2struct, struct2cell

Path:

ModelitUtilRoot

Last modified:

22-Feb-2007 15:56:00

Size:

522 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m

(back to table of contents)

ModelitUtilRoot>strvscat.m

(back to table of contents)
  strvscat - equivalent aan strvcat, maar beschouw '' als lege regel
  
  CALL:
   s = strvscat(a,b,c,...)
  
  INPUT:
   a,b,c,... <char array>
  
  OUTPUT:
   s: <char matrix>
  
  EXAMPLE:
    strvscat(strvcat('aa','bb'),'','d')
  
     ans =
  
      aa
      bb
    
      d 
  
  SEE ALSO: strvcat

Path:

ModelitUtilRoot

Last modified:

25-Jul-2006 16:51:58

Size:

443 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>wavix.m
ModelitUtilRoot>struct2char.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>diaroutines>ComposeDiaList.m
ModelitUtilRoot>struct2str.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m

(back to table of contents)

ModelitUtilRoot>ticp.m

(back to table of contents)
  ticp -
  
  CALL:
      [hwin,cp] = ticp(hwin)
      [hwin,cp,props] = ticp(hwin)
      [hwin,cp] = ticp
      [hwin,cp,props] = ticp
      
  INPUT:
      hwin: window handle
      
  OUTPUT:
      hwin  : window handle, defaults to gcf
      cp    : new pointer
      props : other suspended properties
      +----WindowButtonMotionFcn
  
  IMPORTANT NOTE
     The behavior of this function depends on the number of output
     arguments: when nargout>2 also the WindowButtonMotionFcn will be
     suspended
  
  EXAMPLE (simple)
          ticp;
          <various actions>
          tocp;
  
  EXAMPLE (thorough)
          [hwin,cp]=ticp;
          try
              <various actions>
              tocp(hwin,cp);
          catch
              tocp(hwin,cp);
              rethrow(lasterror);
          end
  
  See also:  ticpeval

Path:

ModelitUtilRoot

Last modified:

21-Oct-2009 06:54:10

Size:

1257 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ModelitUtilRoot>selectdir.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ModelitUtilRoot>ticpeval.m

(back to table of contents)

ModelitUtilRoot>ticpeval.m

(back to table of contents)
 callback that changes pointer while executing
  
  CALL
      The function is designed to be used as apart of a HG callback. See
      example.
  
  INPUT
      obj,event: arg1 and arg2 to be passed to function fp
      fp: function handle or function name
      varargin: arg3, arg4, etc. To be passes to fp
  
  OUTPUT
      none
  
  EXAMPLE 1
      OLD CODE: 
          set(h,'callb',{@myfunc,arg1,arg2}
      NEW CODE: 
          set(h,'callb',{@ticpeval,@myfunc,arg1,arg2}
  
  EXAMPLE 2
      OLD CODE: 
          ticp
          result=funcname(input)
          tocp
      NEW CODE: 
          result=ticpexec(@funcname,input1,input2)
  
  See also
      ticp,tocp, ticpexec

Path:

ModelitUtilRoot

Last modified:

02-Apr-2009 01:27:15

Size:

1173 bytes

Calls functions:

ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m

Is called by functions:

ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>toStr.m

(back to table of contents)
  toStr - convert object to string representation
  
  CALL:
      value = toStr(value)
  
  INPUT
      value: any matlab variable
      
  OUTPUT
      string: <string>
          corresponding string repersentation

Path:

ModelitUtilRoot

Last modified:

16-Aug-2008 15:23:51

Size:

2147 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>struct2cellstr.m
ModelitUtilRoot>struct2treemodel.m

(back to table of contents)

ModelitUtilRoot>tocp.m

(back to table of contents)
  CALL
      tocp
      tocp(hwin)
      tocp(hwin,cp)
      tocp(hwin,cp,props)
  
  INPUT
      hwin: window handle
      cp: new pointer
      
  EXAMPLE
          [hwin,cp]=ticp;
          <various actions>
          tocp(hwin,cp);
       OR
          ticp;
          <various actions>
          tocp;

Path:

ModelitUtilRoot

Last modified:

20-Feb-2008 10:17:13

Size:

536 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ModelitUtilRoot>selectdir.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ModelitUtilRoot>ticpeval.m

(back to table of contents)

ModelitUtilRoot>transact_gui.m

(back to table of contents)
  transact_gui - display transactions in GUI
  
  CALL:
   transact_gui(data,event,fp_getdata,C)
  
  INPUT:
      data: if nargin==1: this is the databse
      fp_getdata: function pointer to function that returns database structure. 
                  This can be a 3 line function like:
                      function db=getdata
                      global MAINWIN %handle of application's main window
                      db=get(MAINWIN,'userdata')
      C: structure with GUI constants (colors, fontsize, etc.). If not specified, default settings are used.
      
  OUTPUT:  
      Updated comments
          This function offers the option of modifying the comments fields of any transaction.
          The function mbdstore(db) is used to register these changes. 
          See mbdundoobj.m : storehandle and storefield should be set when mbdundoobj is called to make this work
          Example
              MAINWIN=create_fig(...)
              data=struct(....)
              db=mbdundoobj(data,'storehandle',MAINWIN,'storefield','userdata')
      ASCII or HTML report
  
 EXAMPLE
  	%install:
          transact_gui([],[],@fp_getdata,C)
          
  	%update from database:
           %====================================
  		%update transaction log
  		if ~isempty(findobj('tag','win_trnsct'))
              transact_gui(db);
  		end
  		%====================================
  
  See also: logbookentry

Path:

ModelitUtilRoot

Last modified:

26-Jan-2010 17:49:54

Size:

17180 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>height.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undomenu.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>transact_update.m
ModelitUtilRoot>windowposV7.m
ModelitUtilRoot>writestr.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ModelitUtilRoot>transact_update.m

(back to table of contents)
  transact_update - display transactions in GUI
  
  SUMMARY
      This function checks if the logbook GUI is posted. If it is, it will
      update this GUI. transact_update is typically called from
      displayfunctions in various applications. The objective is to update
      the logbook GUI is you leave this open for a longer time. If the
      logbook screen is modal, you may avoid calling this function, because
      the database cannot be modified as long as the logbook is posted.     
  
  CALL:
   transact_update(data,ind)
  
  INPUT:
   data: database
   ind:  subsref structure or string with value 'aal' or 'item'
          in case ind='all': all field will be updated
          in case ind='item': only the transaction list will be updated
  
  OUTPUT:
   geen directe uitvoer
  
  EXAMPLE
      transact_update(udnew,'all');

Path:

ModelitUtilRoot

Last modified:

26-Jan-2010 17:27:28

Size:

7090 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>real2str.m
ModelitUtilRoot>rightalign.m
ModelitUtilRoot>validval.m
ModelitUtilRoot>width.m

Is called by functions:

ModelitUtilRoot>transact_gui.m

(back to table of contents)

ModelitUtilRoot>truecolor.m

(back to table of contents)
  truecolor - Maak een Matlab truecolor map uit een lineaire
              color map.
  CALL:
   cdata = truecolor(x,map)
  
  INPUT:
    x: lineaire color map (indices in colormap)
    map: colormap waar x naar verwijst
 
  OUTPUT:
   cdata: truecolor 3 dim array voor gebruik als cdata property van button.
 
  APPROACH:
    x is een vector van indices in map. 
    Maak een array bestaande uit color vectoren uit map.
    Gebruik RESHAPE om dit array om te vormen tot een 3 
    dimensioneel array.
  
  NOTE:
   uint8 is much more compact than double.
   Inefficient code:
          cdata=truecolor(x,map) 
   Efficient code:
          cdata=truecolor(x,uint8(255*map))

Path:

ModelitUtilRoot

Last modified:

09-Jan-2007 15:55:50

Size:

955 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>getcdata.m

(back to table of contents)

ModelitUtilRoot>uigetfolder.m

(back to table of contents)
 UIGETFOLDER   Standard Windows browse for folder dialog box.
 
  CALL
    folder = uigetfolder(title, initial_path)
 
  INPUT
      title
          title string (OPTIONAL)
      initial_path
          initial path (OPTIONAL, defaults to PWD)
          
  OUTPUT
      folder
          selected folder (empty string if dialog cancelled)
 
  EXAMPLE
      folder = uigetfolder                          - default title and initial path
      folder = uigetfolder('Select results folder') - default initial path
      folder = uigetfolder([], 'C:\Program Files')  - default title
 
    See also: UIGETFILE, UIPUTFILE, UIGETDIR, SELECTDIR
  
  NOTE:
      uigetfolder has preceded uigetdir. After appropriate tsting calls to
      uigetfolder should be replaced with calls to uigetdir

Path:

ModelitUtilRoot

Last modified:

20-Mar-2009 15:57:02

Size:

1855 bytes

Calls functions:

ModelitUtilRoot>uigetfolder_win32.dll

Is called by functions:

ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>@filechooser>filechooser.m

(back to table of contents)

ModelitUtilRoot>uigetfolder_win32.dll

(back to table of contents)

Path:

ModelitUtilRoot

Last modified:

05-Nov-2001 11:31:50

Size:

7168 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>uigetfolder.m

(back to table of contents)

ModelitUtilRoot>urlproxyread.m

(back to table of contents)
  urlproxyread -  haal de inhoud van een url op in de vorm van een string,
                  stel daarbij ook de proxy settings in.
 
  CALL:
   [string, status] = 
              urlproxyread(urlChar, method, params, proxyadres, proxypoort)
  
  INPUT:
   urlChar:    <string> met de url
   method:     <string> mogelijke waarden:
                        - 'post'
                        - 'get'
   params:     <cellstr> met parameter/value combinaties die dienen als
                         argumenten voor de uit te voeren opdracht
   proxyadres: <string> adres van de proxyserver
   proxypoort: <integer> poortnummer
                    
  OUTPUT:
   string: <string>
   status: <boolean> true -> gegevens opgehaald
                     false -> fout opgetreden bij uitvoeren opdracht
  
  See also: urlread, urlwrite

Path:

ModelitUtilRoot

Last modified:

13-Jul-2007 10:07:48

Size:

4630 bytes

Calls functions:

ModelitUtilRoot>setProxy.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m

(back to table of contents)

ModelitUtilRoot>utilspath.m

(back to table of contents)
 utilspath - return string containing path to utils directort
  
  CALL
      pth=utilspath
      
  INPUT
      none
      
  OUTPUT
      pth: string containing path to utils directort
      
  See also: modelitpath    

Path:

ModelitUtilRoot

Last modified:

28-Jul-2008 22:03:24

Size:

372 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>installPackage.m
ModelitUtilRoot>installjar.m
ModelitUtilRoot>table>structarray2table.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)

ModelitUtilRoot>validval.m

(back to table of contents)
 validval - make sure uicontrol with style listbox has valid values for
            attributes "val" and "ListboxTop"
 
  CALL
      vl=validval(hlist,center)
 
 INPUT
    hlist: handle van uicontrol object
    center: center selected values (default: 0)
 
  OUTPUT
    attributes "val" and "ListboxTop" are modified if needed
 

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 16:35:44

Size:

2493 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ModelitUtilRoot>transact_update.m

(back to table of contents)

ModelitUtilRoot>varargin2struct.m

(back to table of contents)
  varargin2struct - convert value-pair combinations to structure
  
  CALL:
   defaultOptions = varargin2struct(defaultOptions,ValidProps,...
                      PROPERTY1,VALUE1,PROPERTY2,VALUE2,...)
   defaultOptions = varargin2struct(defaultOptions,ValidProps,...
                      PROPERTY1,VALUE1,OPTSTRUCT,...)
      
  INPUT:
  	  defaultOptions: Struct with default values
      ValidProps:     Allowable fields
      PROPERTY,VALUE: Property-Value pairs
         and/or
      OPTSTRUCT:      Option structure that stores property value pairs
      +----PROPERTY1=VALUE1
      +----PROPERTY2=VALUE2
  
  OUTPUT:
  	  Options: structure waarin alle velden zijn overschreven waarvoor
  	           invoer beschikbaar is
 
  EXAMPLE:
   function do_some(varargin)
   defaultOptions=struct('a',1,'b',2);
   Options=varargin2struct(defaultOptions,fieldnames(defaultOptions),varargin{:});
  
  See also:  getproperty

Path:

ModelitUtilRoot

Last modified:

26-Jun-2008 16:03:39

Size:

3971 bytes

Calls functions:

ModelitUtilRoot>getproperty.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>zoomtool.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>rbline2.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_set.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>pcolorPlot.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>pcolorBar.m
ModelitUtilRoot>patchvalue.m

(back to table of contents)

ModelitUtilRoot>varsize.m

(back to table of contents)
 varsize - compute the approximate size occupied by Matlab variable
  
  CALL
      sz=varsize(S)
      
  INPUT
      S: Matlab variable
      
  OUTPUT
      sz: size in number of bytes

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 16:52:05

Size:

2034 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m

(back to table of contents)

ModelitUtilRoot>width.m

(back to table of contents)
  width - get matrix width, shortcut for size(str,2)
 
  CALL
      w=width(str)
  
  INPUT
      str: matrix
  
  OUTPUT
      w: matrix width
      
  SEE ALSO: size, length, height    

Path:

ModelitUtilRoot

Last modified:

16-Sep-2006 10:10:13

Size:

237 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>transact_update.m

(back to table of contents)

ModelitUtilRoot>windowpos.m

(back to table of contents)
 windowpostion - convert normalized window position to matlab window pixel coordinates
               so that matlab window inclusive border fits area
 
 NOTE: this function will become obsolete. Use windowposV7 instead.
  
 CALL
        inner_position=windowpixel(outer_position,menupresence)
 INPUT
        outer_position; required normalized position of window (with borders)
        menupresence  [menu toolbar]
          menupresence(1):
           1: if one or more drop down menus are present
           0: otherwise
          menupresence(2):
           1: if toolbar is present 
           0: otherwise
       
 OUTPUT
         inner_position: Matlab window position vector borders excluded
                       (if 'menus' vector applies)
         wind: structure met de volgende veldeN:
               wind.BorderWidth, 
               wind.TitleHeight, 
               wind.MenuHeight, 
               wind.ToolbarHeight
 
 FILES READ FROM
         height of border, toolbar and menus are retrieved with GETPRF1
         zie screensetting
 
 NOTE
     since Matlab V7 the behaviour of Matlab is slightly changed.
     This behaviour is observed:
     When a toolbar or menubar is added, the height of teh figure
     increases. Matlab attempts to extend the figure at the top, but only
     does so if there is room available at the desktop.
     otherwise the figure will be expanded downwards.
 
 SEE ALSO:
     windowposV7
 
 APPROACH
 haal de structure 'wind' op met GETPRF1.
 De structure 'wind' heeft de volgende velde:
   wind.BorderWidth, 
   wind.TitleHeight, 
   wind.MenuHeight, 
   wind.ToolbarHeight
 
 Bepaal inner_position uit outer_pixel_position met de volgende aanpassingen:
   Ondergrens   : ophogen met BorderWidth
   Linkerpositie: ophogen met BorderWidth
   Breedte      : 2 maal BorderWidth eraf trekken
   Hoogte       : BorderWidth,TitleHeight,ToolbarHeight eraf trekken%        

Path:

ModelitUtilRoot

Last modified:

15-Aug-2008 18:33:43

Size:

5367 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m

(back to table of contents)

ModelitUtilRoot>windowposV7.m

(back to table of contents)
  windowposV7 - position figure on desktop. This function supersedes
                windowpos
 
  CALL:
   windowposV7(HWIN,NormPos,LMARGE)
  
  INPUT:
   HWIN:   <handle> figure handle
   NormPos <vector of double> required position in normalized coordinates
   LMARGE  <integer> required margin below (in pixels)
       
  OUTPUT:
   this function changes the "outerposition" property of HWIN   
 
  REMARK:
   First install all menu's and toolbars, as these change the
   figure's outerposition, then call this function
 
  EXAMPLE:
   figure
   Htool = uitoolbar;
   uimenu(HWIN,'label','file');
   windowposV7(HWIN,[0 0 1 1],20);
  
  See also: windowpos

Path:

ModelitUtilRoot

Last modified:

11-Jan-2007 13:01:18

Size:

1440 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>transact_gui.m

(back to table of contents)

ModelitUtilRoot>wrclean.m

(back to table of contents)

Path:

ModelitUtilRoot

Last modified:

28-Nov-2008 12:51:47

Size:

270 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>build.m

(back to table of contents)

ModelitUtilRoot>writestr.m

(back to table of contents)
  writestr - schrijf character array weg naar file
  
  CALL
    writestr(fname,str)
  
  INPUT
    fname : weg te schrijven file
    str   : weg te schrijven char array
  
  OUTPUT
    none
    
  EXAMPLE
      hwin=ticp
      hwait=waitbar(0,'Generate report');
      strs={};
  
      for k=1:N
          waitbar((k-.5)/N,hwait);
          strs{end+1}=makeReportLine(k,....);
      end
      writestr(fname,strs(:)); <<<Note! vertical concatination is needed to
                                  create multiline report
      close(hwait);
      tocp
  
  SEE ALSO: readstr

Path:

ModelitUtilRoot

Last modified:

20-Oct-2005 15:28:47

Size:

1351 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>eprintf.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>exetimestamp_create.m
ModelitUtilRoot>installjar.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m

(back to table of contents)

ModelitUtilRoot>zoomtool.m

(back to table of contents)
  zoomtool - install Modelit zoomtool
 
  CALL
      zoomtool
      zoomtool(1)
      zoomtool(1,option)
      zoomtool(N,<property1>,<value1>,<property2>,<value2>,...)
      zoomtool('set',hax,<property1>,<value1>,<property2>,<value2>)
 
 INPUT
  N: mode of operation
           1 install zoom utility (default)
           2 zoom in using rbbox
           3 zoom back using history of zoom windows
           3.1 Maximise  X&Y
           3.2 Maximise  X
           3.3 Maximise  Y
           4 clear zoom history
           5 add current zoomwindow to menu
           6 toggle sliders on/off
           7 delete stored zoomwindows
           8 temporaly disable zoom buttond
           9 reinstall zoom buttond
           10 zoom out (in this case axis&factor are supplied with arg2&arg3)
           11 zoom to predefined values
              Example: zoomtool(11,'axes',hax,'xlim',xlim,'ylim',ylim)
           12 execute callback of x slider
           13 execute callback of y slider
           14 set up X movie
           16 force execution of synchronisation callback
           17 pretend current view is result of zoom action (enables undo,
              xsync, ysync, scale, move, etc)
           18 return zoomhandle
           19 change view so that specific hg object fit
           20 center view on selected objects, do not resize
 
  option: structure of specific zoom settings
           opt.axes      : handle van zoom axes
           opt.parent    : uses 'axes' or 'window'(default: axes)
                             axes: install buttondown on axes
                             window: install windowbuttondown on figure
           opt.xsync     : handles of synchronized x-axes
           opt.ysync     : handles of synchronized y_axes
           opt.patchsync : handle of patch object (usually in overview map)
           opt.scale     : string containing name of function to call after scaling coordinates
                           (will also be added to windowresize function)
                           WARNING: opt.scale installs a resize function on
                           top of current resize function. when axes is
                           deleted this resize function is not disabled
           opt.move      : string containing name of function to call after shifting coordinates
                           ============
                           When ZOOMING on graph: first call opt.move, then call opt.scale
                           When RESIZE on window: only call opt.scale
                           When MOVE on grpah   : only call opt.move
                           ============
           opt.shiftclick: function that is called after shift+click (windows)
                           example: opt.shiftclick='rbrect_init(1,0,''line'');'
           opt.dblclick  : function called when doubleclicked in axes
           opt.leftclick : specify function (hint: to prevent zooming at left mouseclick specify ' ')
           opt.xmovie    : set to 'on' if Xmovie capability is needed (default: 'off')
           opt.label     : Label van hoofd menu (default: Zoom)
           opt.visible   : Label voor zoom 'on' or 'off'
           opt.fa_zoom   : if 1: keep fixed aspect ratio
           opt.keypress  : if 1: enable zooming by key press (this will
                           overwite keypress function for current window)
           opt.wheel:      if 0: disable mousewheel while zooming
                           if 1: enable mousewheel zooming (standard mode)
                           if <1: enable mousewheel zooming (slow)
                           if >1: enable mousewheel zooming (fast)
           opt.xrange    : zoom range (x-axis)
           opt.yrange    : zoom range (y-axis)

Path:

ModelitUtilRoot

Last modified:

22-Apr-2010 10:11:46

Size:

52804 bytes

Calls functions:

ModelitUtilRoot>copystructure.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>getMatlabVersion.m
ModelitUtilRoot>pshape.m
ModelitUtilRoot>rbline.m
ModelitUtilRoot>setMouseWheel.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>PublicFiles>plot_geo.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>setMouseWheel.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>@filechooser>filechooser.m

(back to table of contents)
  filechooser - add a filechooser to a frame
  
  CALL:
   filechooser(C,D,hframe)
  
  INPUT:
   C:      <struct>
   D:      <struct>
   hframe: <handle> of the frame to which the filechooser has to be added
   fp_getfiletype: (optional) function pointer to function to determine
                   filetype
  
  OUTPUT:
   none, a filechooser is created in the specified frame

Path:

ModelitUtilRoot\@filechooser

Last modified:

25-Feb-2010 08:50:44

Size:

9048 bytes

Calls functions:

ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m
ModelitUtilRoot>ComposeDirList.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>PublicFiles>rootpath.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>rmfiles.m
ModelitUtilRoot>uigetfolder.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)

ModelitUtilRoot>@filechooser>get_opt.m

(back to table of contents)
  get_opt - returns the filechooser's undoredo object 
  
  CALL:
   opt = get_opt(obj)
  
  INPUT:
   obj: <filechooser-object>
  
  OUTPUT:
   opt: <undoredo-object>

Path:

ModelitUtilRoot\@filechooser

Last modified:

18-Sep-2006 18:28:14

Size:

249 bytes

Calls functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)

ModelitUtilRoot>@filechooser>refresh.m

(back to table of contents)
  refresh - update the list with files in the filechooser
 
  CALL:
   refresh(obj)
  
  INPUT:
   obj:   <filechooser-object>
  
  OUTPUT:
   none, the list with files in the filechooser is updated

Path:

ModelitUtilRoot\@filechooser

Last modified:

12-Jun-2008 08:07:28

Size:

356 bytes

Calls functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)

ModelitUtilRoot>@filechooser>set_directory.m

(back to table of contents)
  set_directory - change directory in the filechooser
 
  CALL:
   set_directory(obj,value)
  
  INPUT:
   obj:   <filechooser-object>
   value: <string> new directory
  
  OUTPUT:
   none, the directory and the list with files in the filechooser are 
   updated

Path:

ModelitUtilRoot\@filechooser

Last modified:

26-Nov-2009 19:08:28

Size:

797 bytes

Calls functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_filter.m
ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)

ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)
  set_filter - change filefilter
 
  CALL:
   set_filter(obj,value)
  
  INPUT:
   obj:   <filechooser-object>
   value: <string> new filter
  
  OUTPUT:
   none, the filter and the list with files in the filechooser are updated

Path:

ModelitUtilRoot\@filechooser

Last modified:

02-Mar-2008 20:35:40

Size:

440 bytes

Calls functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>private>getDirStruct.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m

(back to table of contents)

ModelitUtilRoot>@filechooser>private>getDirStruct.m

(back to table of contents)
  getDirStruct - return struct array with file information in specified
                 directory
  
  CALL:
   fls = getDirStruct(directory,types,D)
  
  INPUT:
   directory: <string> with directory to be searched for files
   types:     <string> filefilter
   D:         <struct> with at least the field filetypes which contains a
                       struct array with fields 
                                                - label
                                                - filter
                                                - image
                       and the fields
                                      - dirup:  <javax.swing.ImageIcon]
                                      - folder: <javax.swing.ImageIcon]
   fp_getfiletype: function pointer to function to determine filetype, if
                   empty local function is used
  
  OUTPUT:
   fls: <array of struct> 
  
  See also: filechooser, dir

Path:

ModelitUtilRoot\@filechooser\private

Last modified:

02-Mar-2008 20:13:34

Size:

3358 bytes

Calls functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>get_opt.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

Is called by functions:

ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addInstallManual.m

(back to table of contents)
  addInstallManual - add installation manual to help menu
  
  INPUT
      hlpobj: help center object
      menuStr: name for menu
  
  OUTPUT
      hlpobj: help center object, install manual has been added
  
  EXAMPLE
      hlpobj=addInstallManual(hlpobj,'Installatiehandleiding');
  

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

08-May-2007 11:43:01

Size:

522 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>adddownload.m

(back to table of contents)
 addpdf - add pdf document to help form
  
  CALL
      obj=addpdf(obj,name,fname,<PROPERTY>,<VALUE>,<PROPERTY>,<VALUE>,...)
          
  INPUT
      obj: helpmenobj object
      name: name of document
      fname: corresponding filename
      <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

13-Jul-2005 00:21:07

Size:

1174 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addfile.m

(back to table of contents)
  addfile - add file to help form
  
  CALL:
   obj = addfile(obj,name,fname,varargin)
          
  INPUT:
   obj:   object of type helpmenuobj
   name:  string with description of document; appears in menu
   fname: string with url point to file
  
  OUTPUT:
   obj: object of type helpmenuobj

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

28-Oct-2009 17:52:36

Size:

548 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addhtml.m

(back to table of contents)
  addhtml - add html document to help form
  
  CALL:
   obj = addhtml(obj,name,fname,varargin)
          
  INPUT:
   obj:      <object> van het type helpmenuobj
   name:     <string> met de naam van het document
   fname:    <string> met de bestandsnaam
   varargin: <cell array> met mogelijke velden:
                          - varargin{1} url (example www.modelit.nl)
                          - varargin{2} username ([] if anonymous)
                          - varargin{3} password ([] if anonymous)
                          - varargin{4:end}: pad naar bestand
  
  OUTPUT:
   obj: <object> van het type helpmenuobj
  

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

10-Jan-2006 10:18:14

Size:

982 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addinstall.m

(back to table of contents)
 addinstall - add object of type "install" to help menu object
  
  CALL
      obj=addinstall(obj,name,fname,<PROPERTY>,<VALUE>,<PROPERTY>,<VALUE>,...)
          
  INPUT
      obj: helpmenobj object
      name : (part of) name of installer. For example: name=setup.exe wil
              also select install205.exe. The heighest version number will
              be selected.
      fname: corresponding filename
      <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files
  
  EXAMPLE 
      hlpobj=addinstall(hlpobj,'Meest recente software versie','setupMatlab.exe',...
             'path',{'www.modelit.nl','uname','pw','setup'});
  
 See also:
      helpmenu

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

13-Dec-2007 19:42:47

Size:

3163 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addlabel.m

(back to table of contents)
  addlabel - add label to help form
  
  CALL
      obj=addlabel(obj,labelstr)
      
  INPUT    
      obj: helpmenu object
      labelstr: label string to display
      
  OUTPUT
      obj: helpmenu object after update.

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

17-Aug-2008 12:50:24

Size:

407 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addpdf.m

(back to table of contents)
  addpdf - add pdf document to help form
  
  CALL:
   obj=addpdf(obj,name,fname,<PROPERTY>,<VALUE>,<PROPERTY>,<VALUE>,...)
          
  INPUT:
   obj: helpmenobj object
   name: name of document
   fname: corresponding filename
         <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files
 
  SEE ALSO
     addInstallManual

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

09-Jun-2007 12:01:25

Size:

904 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addwebsite.m

(back to table of contents)
 addwebsite - add url to help form
  
  CALL
      obj=addwebsite(obj,name,url)
          
  INPUT
      obj: helpmenobj object
      name: name of document
      url: website to be opened

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

19-Jun-2005 11:54:51

Size:

403 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addzip.m

(back to table of contents)
 addzip - add zipped document to help form
  
  CALL
      obj=addzip(obj,name,fname,<PROPERTY>,<VALUE>,<PROPERTY>,<VALUE>,...)
          
  INPUT
      obj: helpmenobj object
      name: name of document
      fname: corresponding filename
      <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files
 SEE ALSO
      helpmenu

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

07-Feb-2008 00:43:34

Size:

4912 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>addzipHL.m

(back to table of contents)
 addzip - add zipped document to help form
  
  CALL
      obj=addzip(obj,name,fname,<PROPERTY>,<VALUE>,<PROPERTY>,<VALUE>,...)
          
  INPUT
      obj: helpmenobj object
      name: name of document
      fname: corresponding filename
      <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files
 SEE ALSO
      helpmenu

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

08-Feb-2008 13:05:42

Size:

4924 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>helpmenu.m

(back to table of contents)
  helpmenu
  
  CALL:
   D = helpmenu(obj,event,hlpobj,C,D)
  
  INPUT:
   obj:    <handle> van de aanroepende uitcontrol
   event:  <leeg> standaard matlab callback argument
   hlpobj: <
   C:
   D:
  
  OUTPUT:
   D:

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

17-Dec-2009 07:46:02

Size:

9275 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>getRemoteFile.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>movegui_align.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m

(back to table of contents)
  helpmenuobj -
  
  CALL:
   obj = helpmenuobj(varargin)
  
  INPUT:
      <PROPERTY>,<VALUE> pairs
      
      Valid properties:
          path: Cell array
                path{1}: url (example www.modelit.nl)
                path{2}: username ([] if anonymous)
                path{3}: password ([] if anonymous)
                path{4:end}: path to files
 
  NOTE
      helpmenu method opens help window
      
  EXAMPLE / TEST CODE
  
      HWIN=figure
      Htool = uitoolbar(HWIN);
      hlpobj=helpmenuobj('path',{'www.modelit.nl','rikz','rikz','MARIA','manuals'});
      hlpobj=addlabel(hlpobj,'Algemeen');
      hlpobj=addpdf(hlpobj,'Installatie','InstallatieHandleiding.pdf');
      hlpobj=addpdf(hlpobj,'Algemene handleiding','Handleiding_final.pdf');
      hlpobj=addlabel(hlpobj,'Specifieke onderwerpen');
      hlpobj=addpdf(hlpobj,'Inlezen WESP files','Handleiding_Inlezen_WESP.pdf');
      % hlpobj=addpdf(hlpobj,'Aanmaken SWAN bodemkaart','Handleiding_Inlezen_WESP.pdf');
      hlpobj=addpdf(hlpobj,'CEN editor','GeodataHelp.pdf');
      hlpobj=addpdf(hlpobj,'Controle meerjarige reeksen','jaarcontroleHelp.pdf');
      hlpobj=addpdf(hlpobj,'Aanmaken contouren voor kustmetingen','Raaicontour.PDF');
      hlpobj=addlabel(hlpobj,'Websites');
      hlpobj=addwebsite(hlpobj,'Modelit website','www.modelit.nl');
      uipushtool(Htool,'cdata',getcdata('help'),...
          'separator','on',...
          'tooltip','Open help file (download wanneer nodig)',...
          'clicked',{@helpmenu,hlpobj});
  
  METHODS
      addlabel
      addpdf
      newcolumn
      
  See also: helpmenu

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

08-Feb-2007 15:35:52

Size:

1873 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>view_help.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>newcolumn.m

(back to table of contents)
  newcolumn - start new coulum in help menu
  
  CALL
      obj=newcolumn(obj)
      
  INPUT
      obj: object of class helpmenuobj
  
  OUTPUT
      obj: object of class helpmenuobj after updates

Path:

ModelitUtilRoot\@helpmenuobj

Last modified:

17-Aug-2008 12:47:41

Size:

359 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)

ModelitUtilRoot>@helpmenuobj>private>emptyopt.m

(back to table of contents)
  emptyopt - private functuin for class helpmenuobj
  
  SUMMARY
      Create appendable structure for storage in struct array of helpmenu
      object. 
  
  CALL 
      S=emptyopt
      
  INPUT
      none
      
  OUTPUT
      S:
          initial structure , that can be appended.

Path:

ModelitUtilRoot\@helpmenuobj\private

Last modified:

17-Aug-2008 12:53:20

Size:

459 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>addInstallManual.m
ModelitUtilRoot>@helpmenuobj>adddownload.m
ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>@helpmenuobj>helpmenuobj.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m

Is called by functions:

ModelitUtilRoot>@helpmenuobj>addfile.m
ModelitUtilRoot>@helpmenuobj>addhtml.m
ModelitUtilRoot>@helpmenuobj>addinstall.m
ModelitUtilRoot>@helpmenuobj>addlabel.m
ModelitUtilRoot>@helpmenuobj>addpdf.m
ModelitUtilRoot>@helpmenuobj>addwebsite.m
ModelitUtilRoot>@helpmenuobj>addzip.m
ModelitUtilRoot>@helpmenuobj>addzipHL.m
ModelitUtilRoot>@helpmenuobj>newcolumn.m

(back to table of contents)

ModelitUtilRoot>@table>append.m

(back to table of contents)
  append - append tables to a table-object
  
  CALL:
   obj = append(obj,varargin)
   
  INPUT:
   obj:      <table-object>
   varargin: <table-object> tables to be appended
  
  OUTPUT:
   obj: <table-object>
  
  See also: table, table/deleteRow, table/insertRow

Path:

ModelitUtilRoot\@table

Last modified:

19-Sep-2006 22:17:02

Size:

982 bytes

Calls functions:

ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>composeList.m

(back to table of contents)
  composeList - put the table data in a structure which can be used by the
                jacontrol/sorttable object
  
  CALL:
   Contents = composeList(obj,fields,format)
  
  INPUT:
   obj:    <table-object>
   fields: <cellstring> (optional) with fieldnames, default is all
                                   fieldnames
   format: <cellstring> (optional) with formats, see tablefile for possible
                                   values, default is numeric -> number
                                                      other   -> string
  
  OUTPUT:
   Contents: <struct> with fields:
                      - header
                      - contents
                      N.B. this is the format which is needed by the
                      jacontrol/sorttable to display data
  
  See also: table, tablefile/edit, jacontrol

Path:

ModelitUtilRoot\@table

Last modified:

03-Jan-2007 10:17:20

Size:

2841 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>datenum2java.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>deleteColumn.m

(back to table of contents)
  deleteColumn - delete column(s) from table
  
  CALL:
   obj = deleteColumn(obj,varargin)
   
  INPUT:
   obj:      <table-object>
   varargin: <string> one or more table columnnames
  
  OUTPUT:
   obj: <table-object>
  
  See also: table, table/keepColumn, table/renameColumn

Path:

ModelitUtilRoot\@table

Last modified:

20-Sep-2006 10:15:54

Size:

378 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>deleteRow.m

(back to table of contents)
  insertRow - delete one or more rows in a table
  
  CALL:
   obj = deleteRow(obj,rows)
   
  INPUT:
   obj:  <table-object>
   rows: <integer> index of table rows to be deleted
  
  OUTPUT:
   obj: <table-object>
  
  See also: table, table/insertRow, table/append

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 14:14:16

Size:

424 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>disp.m

(back to table of contents)
  disp - display information about a table-object on the console
 
  CALL:
   display(obj)
 
  INPUT:
   obj: <table-object>
 
  OUTPUT:
   none, information about the table-object is displayed on the console
  
  See also: table, table/display, disp

Path:

ModelitUtilRoot\@table

Last modified:

24-Sep-2006 11:14:46

Size:

368 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>display.m

(back to table of contents)
  display - display information about a table-object on the console, called
            when semicolon is not used to terminate a statement 
 
  CALL:
   display(obj)
 
  INPUT:
   obj: <table-object>
 
  OUTPUT:
   none, information about the table-object is displayed on the console
  
  See also: table, table/disp, display

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 12:25:06

Size:

375 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>field2index.m

(back to table of contents)
  field2index - return the columnnumber of the fields
  
  CALL:
   index = field2index(obj,field)
   
  INPUT:
   obj:      <table-object>
   varargin: <string> with columnnames
  
  OUTPUT:
   index: <array of integer> with number of column of columnname, 
                             0 if not present in table
  
  See also: table, table/fieldnames, table/renameColumn, table/deleteColumn

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 15:28:24

Size:

507 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>fieldnames.m

(back to table of contents)
  fieldnames - determine the columnames of the table
  
  CALL:
   fields = fieldnames(obj)
  
  INPUT:
   obj: <table object>
  
  OUTPUT:
   fields: <cellstring> with the fields (columnnames) of the table
  
  APPROACH:
   this function is also important for autocomplete in the command window
  
  SEE ALSO: table, fieldnames

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 10:30:06

Size:

465 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>height.m

(back to table of contents)
  height - return height of table
  
  CALL
      H=height(T)
      
  INPUT    
      T: table object
      
  OUTPUT
      H: number of rows in table

Path:

ModelitUtilRoot\@table

Last modified:

17-Aug-2008 10:13:57

Size:

401 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>table>tableheight.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>insertRow.m

(back to table of contents)
  insertRow - insert table into table at a specified row
  
  CALL:
   obj = insertRow(obj,row,T)
   
  INPUT:
   obj: <table-object>
   row: <integer> index of table row where T has to be inserted
   T:   <table-object> table to be inserted
  
  OUTPUT:
   obj: <table-object>
  
  See also: table, table/deleteRow, table/append

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 14:51:28

Size:

493 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>isField.m

(back to table of contents)
  isField - returns true if field is a field of the table-object
            returns false otherwise
  
  CALL:
   b = isField(obj,field)
  
  INPUT:
   obj:   <table-object>
   field: <string>
  
  OUTPUT:
   b: <boolean> true if field is a field of the table-object
                false otherwise

Path:

ModelitUtilRoot\@table

Last modified:

17-Sep-2006 21:13:38

Size:

410 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>is_in.m

(back to table of contents)
  is_in - determines which rows in obj are equal to rows in obj1
  
  CALL:
   f = is_in(obj,obj1,varargin)
  
  INPUT:
   obj:      <table-object>
   obj1:     <table-object>
   varargin: <string> (optional) restrict comparison to specified columns
                      default: all fields
  
  OUTPUT:
   f: <index> f(i) = j indicates that the ith element in obj is equal to
              the jth element in obj1
  
  See also: table, table/selectIndex, table/selectKey, is_in

Path:

ModelitUtilRoot\@table

Last modified:

19-Sep-2006 16:46:52

Size:

1056 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>isempty.m

(back to table of contents)
  isempty - returns true if table is empty (i.e. number of rows is zero),
            false otherwise
  
  CALL:
   b = isempty(obj)
   
  INPUT:
   obj:  <table-object>
  
  OUTPUT:
   b: <boolean>
  
  See also: table, table/size

Path:

ModelitUtilRoot\@table

Last modified:

16-Sep-2006 14:20:28

Size:

297 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>keepColumn.m

(back to table of contents)
  keepColumn - keep specified columns of a table
  
  CALL:
   obj = keepColumn(obj,varargin)
  
  INPUT:
   obj:      <table-object> 
   varargin: <string> with columnnames to be kept
  
  OUTPUT:
   obj: <table-object> with only the select columns
  
  See also: table, table/deleteColumn, table/renameColumn

Path:

ModelitUtilRoot\@table

Last modified:

20-Sep-2006 10:21:10

Size:

564 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>renameColumn.m

(back to table of contents)
  renameColumn - rename column(s) of table
  
  CALL:
   obj = renameColumn(obj,varargin)
  
  INPUT:
   obj:      <table-object>
   varargin: <string> with (name,newname)-pairs
  
  OUTPUT:
   obj:      <table-object>
  
  See also: table, table/keepColumn, table/deleteColumn

Path:

ModelitUtilRoot\@table

Last modified:

20-Sep-2006 10:16:52

Size:

870 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>rmfield.m

(back to table of contents)
  table/rmfield - apply rmfield method to table object
 
  CALL
      T=rmfield(T,fieldslist)
      T=rmfield(T,field1,field1,...)
  
  INPUT
      T: 
          table object
      fieldlist: 
          cell array containing fieldnames
      field1,field2,...:
          fields listed seperately
      
  OUTPUT
      T:
          table object after update
  

Path:

ModelitUtilRoot\@table

Last modified:

17-Aug-2008 10:07:52

Size:

455 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>select.m

(back to table of contents)
  select - invoke tableselect method on table object
  
  CALL:
      T = select(S,indx,flds)
      T = select(S,indx)
      T = select(S,flds)
  
  INPUT:
      S: table object
      indx: index array
      flds: cell array
  
  OUTPUT:
   T: table object after update
  

Path:

ModelitUtilRoot\@table

Last modified:

17-Aug-2008 10:03:52

Size:

366 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>table>tableselect.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>selectIndex.m

(back to table of contents)
  selectIndex - select one or more rows in a table
  
  CALL:
   obj = selectIndex(obj,index)
   
  INPUT:
   obj:      <table-object>
   index:    <integer> index of table rows to be selected
   varargin: <string> fieldnames of the table-object -> restrict output to
                      these columns
  
  OUTPUT:
   varargout: <table-object> if nargout == 1 && varargin == 2,4,5,....
   varargout: <array> if nargout == varargin
  
  See also: table, table/selectKey, table/is_in

Path:

ModelitUtilRoot\@table

Last modified:

17-Sep-2006 21:43:00

Size:

1626 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>selectKey.m

(back to table of contents)
  selectKey - select one or more rows in a table with keyvalues
  
  CALL:
   varargout = selectKey(obj,key,value,varargin)
   
  INPUT:
   obj:      <table-object>
   key:      <cell array> table columnnames
   value:    <cell array> value to look for in specified columns
   varargin: <string> fieldnames of the table-object -> restrict output to
                      these columns
  
  OUTPUT:
   varargout: <table-object> if nargout == 1 && varargin == 2,4,5,....
   varargout: <array> if nargout == varargin
  
  See also: table, table/selectIndex, table/is_in

Path:

ModelitUtilRoot\@table

Last modified:

19-Sep-2006 16:19:56

Size:

1002 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>size.m

(back to table of contents)
  size - determine the size of the table
  
  CALL:
   [m,n] = size(obj,dim)
  
  INPUT:
   obj: <table-object>
   dim: <integer> (optional) possible values:
                  1 (default) --> vertical (number of rows)
                  2           --> horizontal (number of columns)
  
  OUTPUT:
   m: <integer> number of rows in the table
   n: <integer> number of columns in the table
  
  See also: table, table/length

Path:

ModelitUtilRoot\@table

Last modified:

19-Sep-2006 22:28:06

Size:

942 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>sort.m

(back to table of contents)
  sort - sort table according to specified field and direction
  
  CALL:
   obj = sort(obj, keys, mode)
   
  INPUT:
   obj:  <table-object>
   keys: <cellstring> columnnames of the table to be sorted
   mode: <array of integer> (optional) sorting direction, allowed values:
                             1  --> 'ascend' (default)
                             -1 --> 'descend'  
  
  OUTPUT:
   obj: <table-object> sorted according to specified columns/directions
  
  See also: table

Path:

ModelitUtilRoot\@table

Last modified:

25-Apr-2007 16:03:42

Size:

1037 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>struct.m

(back to table of contents)
  struct - return data component of table object
  
  CALL
      S=struct(T)
  
  INPUT
      T: 
          table object
      
  OUTPUT
      S:
          data content of tabel objeect. this is a table structure

Path:

ModelitUtilRoot\@table

Last modified:

17-Aug-2008 10:09:29

Size:

262 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>subsasgn.m

(back to table of contents)
  subsasgn - assign new values to a table-object
 
  CALL:
   obj = subsassgn(obj,ind,data)
 
  INPUT:
   obj:  <table-object>
   ind:  <struct array> with fields
                        - type: one of '.' or '()'
                        - subs: subscript values (field name or cell array
                                of index vectors)
   data: with the values to be put in the by ind defined fields in the
         table-object, allowed types:
                     - <number>
                     - <boolean>
                     - <string> or <cellstr>
 
  OUTPUT:
   obj: <table-object>
  
  See also: table, table/subsref, subsasgn

Path:

ModelitUtilRoot\@table

Last modified:

17-Sep-2006 21:39:26

Size:

1454 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>subsref.m

(back to table of contents)
  subsref - subscripted reference for a table-object
 
  CALL:
   S = subsref(obj,ind)
 
  INPUT:
   obj:  <table-object>
   ind:  <struct array> with fields
                        - type: one of '.' or '()'
                        - subs: subscript values (field name or cell array
                                of index vectors)
 
  OUTPUT:
   S: <array> with the contents of the referenced field
  
  See also: table, table/subsasgn, subsref

Path:

ModelitUtilRoot\@table

Last modified:

17-Sep-2006 21:06:36

Size:

535 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>table.m

(back to table of contents)
  table - constructor for table-object
  
  CALL:
   obj = table(T)
  
  INPUT:
   T: <array of struct>
      <structarray>    
  
  OUTPUT:
   obj: <table-object>
  
  Example:
   S(1).number = 1;S(1).string = 'one'
   S(2).number = 2;S(2).string = 'two'
   T = table(S);

Path:

ModelitUtilRoot\@table

Last modified:

22-Oct-2007 18:35:44

Size:

773 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ApplicationRoot>wavixIV>MONITOR>monitorview.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>unique.m

(back to table of contents)
  unique - restrict the table to unique rows
  
  CALL:
   [B,I,J] = unique(obj,varargin)
  
  INPUT:
   obj:      <table-object>
   varargin: <string> (optional) with table columnnames
                      default: all fields
  
  OUTPUT:
   B: <table-object> with only the unique rows
                     if nargin > 1 restricted to the specified columns
   I: <table-object> index such that B = obj(I);
   J: <table-object> index such that obj = B(J);
  
  See also: table, table/selectIndex, table/selectKey, unique

Path:

ModelitUtilRoot\@table

Last modified:

17-Sep-2006 19:43:10

Size:

1340 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>private>istable.m
ModelitUtilRoot>@table>private>structarray2table.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>private>emptyRow.m
ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)

ModelitUtilRoot>@table>private>emptyRow.m

(back to table of contents)
  emptyRow - make an empty table row for the given table-object
  
  CALL:
   obj = emptyRow(obj)
  
  INPUT:
   obj: <table object> table-object for which an empty row has to be made
   N:   <integer> number of emptyrows to generate
  
  OUTPUT:
   obj: <table object> a table with zero rows with the same format as the
                       input table
  
  See also: table, table/append

Path:

ModelitUtilRoot\@table\private

Last modified:

17-Sep-2006 20:27:16

Size:

742 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>append.m

(back to table of contents)

ModelitUtilRoot>@table>private>isSimilar.m

(back to table of contents)
  isSimilar - return true if obj and obj1 have the same fields and formats
              return false otherwise
  
  CALL:
   b = isSimilar(obj,obj1)
  
  INPUT:
   obj:  <table-object>
   obj1: <table-object>
  
  OUTPUT:
   b: <boolean> true if obj and obj 1 have same fields and format
                false otherwise
  
  See also: table, table/append

Path:

ModelitUtilRoot\@table\private

Last modified:

17-Sep-2006 20:15:40

Size:

940 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ModelitUtilRoot>@table>append.m

(back to table of contents)

ModelitUtilRoot>@table>private>istable.m

(back to table of contents)
  istable - determine if S can be converted to a table-object
  
  CALL:
   [ok,emsg] = istable(S)
  
  INPUT:
   S: <struct> (candidate) table structure
      
  OUTPUT:
   ok: <boolean> true if S is table structure,
                 false otherwise
   N:  <integer> height of table
 
  See also: table

Path:

ModelitUtilRoot\@table\private

Last modified:

13-Nov-2006 16:42:12

Size:

1303 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m

(back to table of contents)

ModelitUtilRoot>@table>private>structarray2table.m

(back to table of contents)
  structarray2table - convert array of structures to stucture of arrays
  
  CALL:
   T = structarray2table(S)
      
  INPUT:
   S: <structarray>
 
  OUTPUT:
   T: <struct> structure of arrays
      
  APPROACH:
   concatenate numeric fields
   convert fields with strings into cellstrings
  
  See also: table

Path:

ModelitUtilRoot\@table\private

Last modified:

16-Sep-2006 12:21:36

Size:

947 bytes

Calls functions:

ModelitUtilRoot>@table>append.m
ModelitUtilRoot>@table>composeList.m
ModelitUtilRoot>@table>deleteColumn.m
ModelitUtilRoot>@table>deleteRow.m
ModelitUtilRoot>@table>disp.m
ModelitUtilRoot>@table>display.m
ModelitUtilRoot>@table>field2index.m
ModelitUtilRoot>@table>fieldnames.m
ModelitUtilRoot>@table>height.m
ModelitUtilRoot>@table>insertRow.m
ModelitUtilRoot>@table>isField.m
ModelitUtilRoot>@table>is_in.m
ModelitUtilRoot>@table>isempty.m
ModelitUtilRoot>@table>keepColumn.m
ModelitUtilRoot>@table>renameColumn.m
ModelitUtilRoot>@table>rmfield.m
ModelitUtilRoot>@table>select.m
ModelitUtilRoot>@table>selectIndex.m
ModelitUtilRoot>@table>selectKey.m
ModelitUtilRoot>@table>size.m
ModelitUtilRoot>@table>sort.m
ModelitUtilRoot>@table>struct.m
ModelitUtilRoot>@table>subsasgn.m
ModelitUtilRoot>@table>subsref.m
ModelitUtilRoot>@table>table.m
ModelitUtilRoot>@table>unique.m
ModelitUtilRoot>height.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>@table>table.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>fr_divider.m

(back to table of contents)
  fr_divider - insert draggable divider
  
  CALL:
   [hframe, jseparator] = fr_divider(hparent, varargin)
  
  INPUT:
      hparent: handle of parent frame
      property,value: property value pair
                  VALID PROPERTIES:
                  rank: rank of frame, any number 
                  mode: resize mode, choose one of the following
                        proportional: increase size of all lower frames
                                      proportional at the cost of aall
                                      above frame
                        neighbour   : increase size of only next frame at
                                      the cost of only the frame directly
                                      above
  
  OUTPUT:
   hframe: handle of frame that contains divider
   jseparator: jacontrol of type jseparator

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

19-Oct-2009 16:00:20

Size:

8014 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_sortframes.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>test.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>fr_title.m

(back to table of contents)
  lm_title - set or get the title of a frame
  
  CALL:
   h = lm_title(hframe): return handle to title object
   h = lm_title(hframe, str, varargin): install title in frame
  
  INPUT:
   hframe:   handle of frame
   str:      title to be displayed in frame
   varargin: valid property-value pairs for a uicontrol with style “text”
  
  OUTPUT:
   h: handle to title object (uicontrol with “text”)
  
  APPROACH:
   (default settings applied)
    -1- create a uicontrol with properties:
        tag      = 'frmTitle'
        userdata = <handle of frame>
    -2- call mbdlinkobj with properties:
        pixpos    = <depends on extent of title>
        normpos   = [0 1 0 0]
        clipping  = true
        clipframe = <parent of frame>
        keepypos  = true

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

11-Aug-2008 22:53:54

Size:

2059 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>isparentframe.m

(back to table of contents)
  lm_isparent - Find out if a given frame is a child of any of a list of 
  candidate parent frames
  
  CALL:
   istrue = isparentframe(h, hframes)
  
  INPUT
   h:       Frame handle (scalar)
   hframes: Handles of potential parent frames
  
  OUTPUT:
   istrue: Boolean, true if any of hframes is the parent of h
   
  See also: lm_parentframe

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

11-Aug-2008 22:22:02

Size:

1521 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>MBDresizedir>mbdlinkslider2frame.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m

(back to table of contents)
  lm_listFrameHandles - retrieve frame handles and frame data for the 
  specified figure
  
  CALL:
   [FrameHandles, FrameData] = lm_listframeHandles(hfig)
  
  INPUT:
   hfig: figure handle (defaults to gcf)
      
  OUTPUT:
   FrameHandles: Nx1 list of frame handles
   FrameData:    Nx1 struct array with corresponding application data

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Sep-2010 15:34:32

Size:

3205 bytes

Calls functions:

ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m
ModelitUtilRoot>MBDresizedir>mbdsortframes.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframecontent.m
ModelitUtilRoot>MBDresizedir>ur_getframechildren.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m

(back to table of contents)
 delete frame and all dependent items
  
  CALL
      mbd_deleteframe(hframes)
  
  INPUT
      hframes: list of frame handles
      
  OUTPUT
      none
  
  See also: lm_deleteframecontent

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

04-Aug-2008 15:02:47

Size:

1454 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_deleteframe.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframecontent.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbd_deleteframecontent.m

(back to table of contents)
  mbd_deleteframecontent - delete contents of frame, but leave frame in place
  
  CALL
      mbd_deleteframecontent(hframes,h_excepted)
  INPUT
      hframes: frame or frames to be deleted (all frames must be a member
               of the same figure)
      h_excepted: handles of objects that should not be deleted
 
  OUTPUT
      none
      
  See also: mbd_deleteframe

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Aug-2008 10:28:50

Size:

2068 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m
ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m

Is called by functions:

ModelitUtilRoot>autolegend.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbd_initialize_axis.m

(back to table of contents)
  mbd_initialize_axis - 
  
  CALL:
   h = mbd_initialize_axis(HWIN,LAYER)
  
  initialize pixel axes for this window
  
  INPUT
      HWIN: window for which pixel axes will be set (defaults to gcf)
      LAYER: Layer number. If needed, multiple axes objects can be created
      to enable plotting in different layers. Frames plotted in the current
      axes obscure lines and text objects in other layers
          
  OUTPUT
      h: handle of pixel axes for layer LAYER
      
  EXAMPLE    
      hax=mbd_initialize_axis;
      h=text(1,1,'my text','parent',hax);
      mbdlinkobj(h,hframe,'pixelpos',[ 10 10 20 20]);

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

14-Oct-2006 00:21:48

Size:

1437 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_initaxes.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>autolegend.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdarrange.m

(back to table of contents)
    mbdarrange - arrange uicontrol objects in rows and columns
                                                                                    
    CALL                                                                            
    	mbdarrange(hframe,property,value,...)                                       
    	mbdarrange(hframe,propertystruct)                                                                   
                                                                                    
    INPUT        
      input comes in parameter-name,value pairs (parameter name not case
      sensitive)
      LMARGE, value: margin left (Default =10)
                     LMARGE is a scalar  
      RMARGE, value: margin right (Default =10)
                     RMARGE is a scalar  
      HMARGE, value: margin between, horizontal (Default =5)
                     HMARGE may be specified as a vector or scalar  
      TMARGE, value: margin top (Default =15)
                     TMARGE is a scalar  
      BMARGE, value: margin below (Default =6)
                     BMARGE is a scalar  
      VMARGE, value: margin between, vertical (Default =1)
                     VMARGE may be specified as a vector or scalar  
      PIXELW, value: pixel width of frame (default: compute)
      PIXELH, value: pixel height of frame (default: compute)
      NORESIZE, value: if set, do not resize frame
      HEQUAL, value: if set, distribute Horizontally (default: 0)
      VEQUAL, value: if set, distribute Vertically (default: 0)
      HNORM, (0,1) if 1: normalize  horizontally (use full frame width)
      VNORM, (0,1) if 1: normalize  vertically (use full frame height)
      HCENTER, (0,1,2) if 0: left align
                       if 1: center items in horizontal direction
                       if 2: right align items in horizontal direction
               NOTE: if HNORM==1 the HCENTER option is ignored
      VCENTER, (0,1,2) if 0: top align
                       if 1: center items in vertical direction
                       if 2: bottom align
               NOTE: if VNORM==1 the VCENTER option is ignored
 
  INDIRECT INPUT
      object application data:
          keeppixelsize: set to 1 to prevent changing pixelsize
          ignoreh      : set to 1 to prevent using height to compute row
                         pixel height
          ignorew      : set to 1 to prevent using width to compute column
                         pixel width
          pixelpos     : if set, pixelpos is not recomputed
          normpos      : if option HNORM is active, element 3 of normpos is
                         used (EXCEPTION: if object is spread over more
                         columns, its normalized width is not used)
      object attributes
          pos
          type
          extent
    OUTPUT 
        pixpos:[pixpos(1) pixpos(2] extent van objecten, inclusief marges    
        raster: Coordinates of raster. Suppose raster is M x N:
           raster.x.pixelpos (length N+1)
           raster.x.normpos  (length N+1)
           raster.y.pixelpos (length M+1)
           raster.y.normpos  (length M+1)
    AANPAK                                                                          
          

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

08-Jun-2010 18:46:17

Size:

23598 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdinnerpixelsize.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m

(back to table of contents)
  mbdcreateexitbutton - Add exit button to frame. 
  
  SUMMARY
      Add exit button to frame. By default this button is placed in yhe UR
      corner of a frame. 
      
  CALL
      h = mbdcreateexitbutton(hparent,BACKG,callback)
      
  INPUT:
   hparent:  handle van parent frame
   BACKG:    color for transparant part of button
   callback: additional function to call when frame is closed
  
  OUTPUT:
   h: handle van button
      
  EXAMPLE:
      positioneer button rechts onder
      h=mbdcreateexitbutton(hparent)
  				h=mbdcreateexitbutton(h_hlp)
  				setappdata(h,'normpos',[ 1 1 0 0]);
  				setappdata(h,'pixelpos',[-14 -14 12 12]);
 
  SEE ALSO:
     fr_exitbutton
     mbdframeonoff

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Aug-2008 10:27:33

Size:

1873 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>getcdata.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_exitbutton.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdcreateframe.m

(back to table of contents)
    mbdcreateframe - maak een mbdresize frame aan
                                                                                    
    CALL                                                                            
    	h=mbdcreateframe(handle,'property', value, 'property', value)                                                                   
    	h=mbdcreateframe('property', value, 'property', value)                                                                   
                                                                                    
    INPUT             
  	handle: handle van parent frame.
              Als er geen parenthandle wordt opgegeven, 
              dan wordt het current figuur de parent
  	'property'/value : 
              Niet default eigenschappen van het frame.
              Deze hoeven alleen te worden opgegeven voor de niet-default waarden.
              Mogelijke properties:
  
  PROPERTY         BETEKENIS
 ======================================================================
  'active'         zichtbaarheid van het frame en alle children
                   true==> zichtbaar
                   false==> niet zichtbaar
  'border'        (default=true)
                   zichtbaarheid van de rand van het frame en het frame zelf
                   true==> zichtbaar
                   false==> onzichtbaar
                   LET OP!: de rand van het frame wordt op de inborder getekend
  'enable'         enable properties van dit frame en alle children
  'exitbutton'     (default=false)
                   aanwezigheid van exitbutton
  'exitfunction'   functie die wordt aangeroepen indien frame gedeactiveerd wordt
  'lineprops'      (default: [])
                   Eigenschappen van de line die het frame markeert
                   zie Matlab - line voor meer informatie
                   VOORBEELD: ...,'lineprops',mbdlineprops('color','k','shadowed',0 ),...
                              ...,'lineprops',mbdlineprops,...
  'shadowed'       eigenschap: (default true)
                   Wanneer property lineprops is gezet zorgt shadowed ervoor
                   dat er consequent een schaduw wordt getekend.
  'maxpixelsize'   (default=[inf inf]) 
                   When pixelsize is set this defines the maxvalue (per
                   dimension)
  'minmarges'      marge in pixels voor dit frame [LINKS ONDER RECHTS BOVEN] 
                   TEN OPZICHTE VAN PARENT FRAME!! (dus niet tov van child frames)
                   LET OP!: de rand van het frame wordt op de inborder getekend
  'normposition'   positie van topframe tov van figure (normalized)
  'normsize'       (default=[1 1])
                   Afmetingen van het frame in genormaliseerde coordinaten
                   LET OP: door de pixelsize NaN op te geveb wordt deze berekend 
                   als de som van de ACTIEVE subframes
  'parenthandle'   handle van parent frame (meestal alseerste argument doorgegeven)
                   nodig indien een top frame in een niet-current scherm wordt aangemaakt
  'patchprops'    (default: [])
                   Eigenschappen van de patch die het frame markeert
                   zie Matlab - patch voor meer informatie
                   VOORBEELD: ...,'patchprops',mbdpatchprops('facec',C.WINCOLOR,'linew',1),...
              
  'pixelposition'  positie van topframe tov van figure (in pixels)  
  'pixelsize'      (default=[0 0])
                   Afmetingen van het frame in pixel coordinaten
  'rank'           (default=0)
                   Plaats van het scherm: 
                      bij horizontale splitsing: hoe hoger hoe meer naar rechts
                      bij verticale splitsing: hoe hoger hoe meer naar beneden
  'slider'         handle van een slider object
                   de children frames en objecten worden afhankelijk van de 
                   slider instelling geplaatst.
  'splithor'       (default= omgekeerde van splitsings richting van parent)  
                   true==> splits horizontaal
                   false==> splits verticaal
  'title'         af te drukken titel string
                  
    OUTPUT                                                                          
    	h:  de handle van het gemaakte frame       
       
  EXAMPLES
  Example -1-
  Create a figure that sizes to fit contents exactly:
  hfig=mbdcreateframe(HWIN,'splithor',0,'pixelsize',[NaN NaN],'normsize',[0 0]);
  
  Example -2-
  Create a figure that sizes to fit contents but does not shrink the figure:
  hfig=mbdcreateframe(HWIN,'splithor',0,'pixelsize',[NaN NaN],'normsize',[1 1]);

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

08-Mar-2008 12:49:30

Size:

20660 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>MBDresizedir>mbd_initialize_axis.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbddoubleframe.m

(back to table of contents)
 Creeer een frame dat kan worden geminimaliseerd
  
  CALL
      [h_ItemFrame,h_frame]=mbddoubleframe(h_parent,titlestr,outer_frame_opt,inner_frame_opt)
  
  INPUT
    h_parent : parent frame
    titlestr : titel
    outer_frame_opt  : cell array met opties voor buitenste frame
                       Default properties:
                               'normsize',[1 0],...
                               'pixelsize',[0 NaN],...
                               'border',0,...
                               'splithor',0
    inner_frame_opt  : cell array met opties voor binneste frame
                       Default properties:
                               'normsize',[1 1],...
                               'lineprops',mbdlineprops,...
                               'active',1
  
  OUTPUT
    h_ItemFrame: frame waarin getekend kan worden
    h_frame: buitenste frame
  
  ZIE OOK
     equivalent aan mbdcreateframe
  
  EXAMPLE
  	mbddoubleframe(h_parent,'Edit object',{'rank',1,'tag','EDITOR'},{})
  	mbddoubleframe(h_parent,'Edit object',{'tag','EDITOR'})
  	mbddoubleframe(h_parent,'Edit object')

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

15-Aug-2008 18:35:09

Size:

3041 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>getcdata.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_doubleframe.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdinnerpixelsize.m

(back to table of contents)
  mbdinnerpixelsize - Change pixelsize property of frame 
  
  SUMMARY
  Change pixelsize property of frame so that the size of
  the innerframe matches a given size. This utility is useful if the size
  of what goes into the frame is known and one wants to shrink the outer
  frame so that it exactly fits its contents. 
  
  CALL:
   outbordersize = mbdinnerpixelsize(hframe, innerborderpixelsize)
  
  INPUT:
   hframe: handle van MBD frame
   innerpixelsize: required pixel size (inner border)
  
  OUTPUT
   outbordersize: computed outer border size

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

13-Oct-2009 19:20:08

Size:

979 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>autolegend.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdlineprops.m

(back to table of contents)
   lm_lineprops -  return default line options for frame border (line)
  
  SUMMARY
      This function returns a structure tha can be passed to the Matlab
      "line" command. If called without arguments it will produce the
      settings that are needed to plot a "standard" border.  
      Any property value pair that can be passed to the line command can
      also be passed to lm_lineprops.
      Additionally the argument "shadowed" may be passed. This argument
      tells the layout manager to plot not one, but two lines. This results
      in a shadow effect.  
  
  CALL
      s=lm_lineprops(property,value,...)
          
  INPUT
      property, value: any line property
      'shadowed',B: B=1==> apply shadow
                    B=0==> do not apply
  
 See also: lm_patchprops, lm_createframe

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Aug-2008 10:33:55

Size:

2060 bytes

Calls functions:

ModelitUtilRoot>getproperty.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>transact_gui.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdlinkobj.m

(back to table of contents)
    mbdlinkobj - linkt een object aan een mbdframe
                                                                                    
    CALL                                                                            
    	mbdlinkobj(hobj, hframe, property, value, property, value,...)   
    	mbdlinkobj(hobj, hframe, struct(property, value))   
                                                                                    
    INPUT                                                                           
      hobj  : object or array of handles or jacontrol object
      hframe: frame to link to
      property: char string containg property name
      value:  corresponding property value. Note: property/value
              combinations may als be passed on as a tructure.
  
      <propertye, value>
             clipframe
                    see mbdresize
             clipping [0 or 1]
                    clip object if out of frame borders
             enable
                    Default: enable status is copied from application data
                    "enable" from frame.
                    Note
                    <on> and <off> is supported. <inactive> is not supported.
                         Object  |          Frame
                         enabled |       enabled status
                                  'Frame=on' 'Frame=off' 'Frame=inactive'
                         ========================================== 
                         0  ==>   'off'      'off'       <not supported>
                         1  ==>   'on'       'off'       <not supported>
                         2  ==>   'inactive' 'off'       <not supported>
                         3  ==>   'off'      'off'       <not supported>
                         4  ==>   'on'       'on'        <not supported>
                         5  ==>   'inactive' 'inactive'  <not supported>
             keeppixelsize : is 1 maintain pixel height and width while alignigning in matrix 
             keepypos: if 1 ==> position of slider has no effect on this
                                object
             normpos [X,Y,WIDTH,HEIGHT]
                    normalized position relative to LL corner of frame
             pixelpos [X,Y,WIDTH,HEIGHT]
                    pixel position relative to LL corner of frame
             visible
                         0  ==> do not show
                         1  ==> show
             row: align on position (row,col) in matrix
             col: align on position (row,col) in matrix
  
    OUTPUT                                                                          
        none                                                                                
        
    AFFECTED OBJECTS
        -1- affected application data of frame:
            when an object is linked to a frame, this will affect the following
            fields of application data of this frame:
              uichildren
              textchildren
              children
              javachildren
        -2- affected properties of object:
              parent: when object-parent differs from frame-parent
              units : set to "pixel" when object is of type
                      text,uicontainer,hgjavacomponent
        -3- affected application data of object, required: 
              normpos
              pixelpos
              visible
              enable
              clipping
              keepypos
        -4- affected application data of object, optional: 
              clipframe
              row
              col
              keeppixelsize

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

20-Mar-2008 19:33:01

Size:

11693 bytes

Calls functions:

ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdlinkslider2frame.m

(back to table of contents)
  lm_linkslider2frame - make y-position of frame content dependent on a 
                        vertical slider
  
  CALL:
   lm_linkslider2frame(hslid, targetframe)
  
  INPUT:
   hslid:       handle of uicontrol of style "slider"
   targetframe: handle of target frame. The contents of this frame can be 
                moved by using the slider
  
  OUTPUT:
   no direct output. The slider handle is stored in the target frame in the 
   property "slider"

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

19-Mar-2010 09:43:20

Size:

2739 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>isparentframe.m
ModelitUtilRoot>MBDresizedir>mbdresize.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkslider2frame.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdpatchprops.m

(back to table of contents)
   mbdpatchprops -  return default line options for frame border (patch)
  
  SUMMARY
      This function returns a structure tha can be passed to the Matlab
      "patch" command. If called without arguments it will produce the
      settings that are needed to plot a "standard" border for a frame that
      is showedusing a patch object.  
      The advantage of using a patch is that it provides a background color
      (like a uicontrol frame) but does not obscure axeses and objects
      plotted in it.   
  
  CALL
      s=mbdpatchprops(varargin)
          
  INPUT
      property, value: any patch property
  
 See also: lm_lineprops, lm_createframe

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Aug-2008 10:36:50

Size:

2060 bytes

Calls functions:

ModelitUtilRoot>getproperty.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdpixelsize.m

(back to table of contents)
  lm_pixelsize - get pixelsize of frame
  
  CALL:
   pixelsize = lm_pixelsize(hframe)
  
  INPUT:
   hframe: frame handle
  
  OUTPUT:
  pixelsize: vector [height, width] with the pixelsize of the frame
  
  EXAMPLE: position figure in the middle of the screen
   HWIN = figure;
   hmain = lm_createframe(HWIN,'splithor',0,'pixelsize',[300 200]);
   lm_resize(HWIN);
   pixelsize = lm_pixelsize(hmain);
   scrsz = get(0,'screensize');
   mid = scrsz(3:4)/2;
   set(HWIN,'pos',[mid 0 0]+[-pixelsize/2 pixelsize]);

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

12-Aug-2008 12:12:34

Size:

1272 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_sortframes.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdresize.m

(back to table of contents)
  lm_resize - resize the figure and position all the objects it contains
 
  CALL:
   lm_resize(hfig, event)
 
  INPUT:
   hfig : figure handle
   event: standard Matlab callback argument, not used
 
  OUTPUT:
   All frames created with "lm_createframe" and all the objects linked to
   these frames with "lm_linkobj" are positioned in the figure.
  
  EXAMPLE:
   lm_resize(HWIN);
   set(HWIN,'Visible','on','ResizeFcn',@lm_resize);
 
  APPROACH:
   - maak een lijst van alle zichtbare mbdresize frames
   - zet alle objecten die in de MBD frames zitten uit
   - zet alle exit buttons uit
   - pas de sliderheight aan als de hoogte van het figuur groter is dan de sliderheight
   - pas de sliderheight aan
   - bereken de nieuwe posities van de mbdresize frames (inclusief de exit buttons)
   - zet de exit buttons van de zichtbare MBD frames weer aan
   - bepaal de sliderpositie
   - scroll het scherm tot de slider value weer klopt met het zichtbare scherm
   - bepaald voor alle zichtbare mbdresize frames de posities van de bijhorende objecten

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

17-Apr-2010 09:53:46

Size:

37783 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdsortframes.m
ModelitUtilRoot>dprintf.m

Is called by functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>mbddoubleframe.m
ModelitUtilRoot>MBDresizedir>mbdlinkslider2frame.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m
ModelitUtilRoot>transact_update.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ModelitUtilRoot>getRemoteFile.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>mbdsortframes.m

(back to table of contents)
  lm_sortframes - create a sorted list of frames which are create with 
  lm_createframe, the frames are sorted based on level in hierarchy, parent 
  and rank
                                                                                    
  CALL:                                                                            
   [FrameData, parentIndex] = lm_sortframes(hfig)                                                                
                                                                                    
  INPUT:
   hfig: figure handle
  
  OUTPUT:
   FrameData: structarray with collected information per frame                        
                  +----stack[]: debug informatie                     
                  |    +----file (char array)      
                  |    +----name (char array)      
                  |    +----line (double)          
                  +----treetop (logical)           
                  +----parenthandle (double)       
                  +----rank (double)               
                  +----normsize (double array)     
                  +----pixelsize (double array)    
                  +----maxpixelsize (double array) 
                  +----normposition (double array) 
                  +----pixelposition (double array)
                  +----enable (logical)            
                  +----splithor (double)           
                  +----border (double)             
                  +----exitbutton (logical)        
                  +----exitfunction (char)         
                  +----active (logical)            
                  +----exitbuttonhandle (double)   
                  +----minmarges (double array)    
                  +----children (double)           
                  +----textchildren (double)       
                  +----javachildren (double)       
                  +----uichildren (double)         
                  +----slider (double)             
                  +----patchhandle (double)        
                  +----linehandle (double)         
                  +----shadowlinehandle (double)   
                  +----level (double)              
                  +----showslider (double)         
                  +----handle (double)             
                  +----inborderpos (double)        
                  +----outborderpos (double)       
                  +----activenode (double)         
                  +----enablednode (logical)  
   parentIndex: list with the parent indices corresponding to each element 
                in FrameData
                                                                                    
  APPROACH:                                                                          
                                                                                    
   - maak een lijst van alle frames                                                 
   - verwijder alle frames die niet met createMBDframe zijn aangemaakt uit de lijst  
   - bepaal het level van de overgebleven frames
   - sorteer deze levels oplopend
   - bereken eigenschap "pixelsize"

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

12-Aug-2008 14:59:38

Size:

11163 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m
ModelitUtilRoot>is_in.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_sortframes.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>ur_getframechildren.m

(back to table of contents)
  lm_childframes - list the child-frames directly below a given frame
 
  CALL:
   h_frames = lm_childframes(hframe)
 
  INPUT:
   hframe: handle of the parent frame (scalar)
  
  OUTPUT:
   h_frames: list of handles of child frames

Path:

ModelitUtilRoot\MBDresizedir

Last modified:

11-Aug-2008 22:44:06

Size:

806 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdListFrameHandles.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_childframes.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>@dateselector>callback.m

(back to table of contents)
  callback - Internal component of dateselector object.
  
  CALL/INPUT/OUTUT:
      not for external use

Path:

ModelitUtilRoot\MBDresizedir\@dateselector

Last modified:

17-Aug-2008 10:47:42

Size:

232 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m

(back to table of contents)
  dateselector - create dateselector component (Calendar object)
  
  CALL
      obj=dateselector(property, value,...)
      
  INPUT
      PROPERTY  DEFAULT  MEANING
      Parent    gcf      Parent of Calendar frame. May be other frame or
                         figure handle
      Backg     figcolor Color used for pseudo transparant items
      Tag       ''       Tag of Calendar frame
      Rank      1        Rank of Calendar frame
      Value     now      datenum value
      Maximize  1        if maximized: show calendar, otherwise show date
                         only
      Callback  []       Callback function pointer. This function will be
                         called when user selects a date. Arguments:
                             arg1: object
                             arg2: event
                             +----calendar: user clicked on calendar
                             +----month: user clicked on month
                             +----year: user changed year field
                             +----date: user changed date field
                             arg2: value. The current date
  
  OUTPUT
      obj: Calendar object. The private fields of the object mainly contain
      |                     information on handles. Object data subject to
      |                     change (like value and maximize property) are
      |                     stored as application data.
      +----h_all: handle of frame object
      +----h_hdr: handle of header frame
      +----h_daytype: handle of daytype field
      +----h_day: handle of date field
      +----h_mnth: handle of month field
      +----h_yr: handle of year field
      +----h_expand: handle of expand button
      +----BackgroundColor: pseudo transparant color (identical to
      |                     background)
      +----h_cal: handle of calendar table frame
      +----h_dates: [6x7 double] handles of date buttons
  
  OBJECT METHODS
      obj.set
      obj.get
      obj.callback
  
  SEE ALSO
      selectdate
 
  EXAMPLE: 
      if nargin==0
          %test
          NM='test window';
          delete(findobj('name',NM));
          figure('name',NM);
          h_fr=mbdcreateframe(gcf,'splithor',0);
          mbdcreateframe(h_fr,'border',1,'splithor',0,'rank',2,'normsize',[1 10]);
          %initialize
          dateselector('Parent',h_fr,'tag','Example');
          set(gcf,'resizef',@mbdresize);
  
          %update
          for k=1:100
              h_frame  =findobj('tag','Example');
              obj      =get(h_frame,'userdata');
              curvalue =get(obj,'value');
              set(obj,'value',curvalue+1);
              pause(.1);
          end
          return
      end
 Create dateselector object and set user defined fixed properies:

Path:

ModelitUtilRoot\MBDresizedir\@dateselector

Last modified:

17-Aug-2008 10:39:14

Size:

7921 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>selectdate.m
ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>@dateselector>get.m

(back to table of contents)
  dateselector/get - get property of calendar object
  
  CALL
      prop_value=get(obj,prop_name)
   
  INPUT
      prop_name:
            Name of property that is retreived
            
  OUTPUT
      prop_value: 
          Value of property that is retreived
  
  SEE ALSO
      dateselector/get

Path:

ModelitUtilRoot\MBDresizedir\@dateselector

Last modified:

17-Aug-2008 10:44:05

Size:

1164 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m
ModelitUtilRoot>getproperty.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)
  dateselector/set - change property of calendar object
  
  CALL
      set(obj,property,value,...)
      set(obj,propertystruct,...)
   
  INPUT
      <option>,<argument>
            See dateselector constructor for list of possible options
            
  OUTPUT
      obj: Calendar object after update
  
  SEE ALSO
      dateselector/get

Path:

ModelitUtilRoot\MBDresizedir\@dateselector

Last modified:

17-Aug-2008 10:42:02

Size:

3335 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>getproperty.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>@dateselector>private>getDefopt.m

(back to table of contents)
  getDefopt - Private function of dateselector object
  
  CALL/INPUT/OUTUT:
      not for external use

Path:

ModelitUtilRoot\MBDresizedir\@dateselector\private

Last modified:

17-Aug-2008 10:47:48

Size:

347 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>@dateselector>callback.m
ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>@dateselector>dateselector.m
ModelitUtilRoot>MBDresizedir>@dateselector>get.m
ModelitUtilRoot>MBDresizedir>@dateselector>set.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m

(back to table of contents)
     lm_arrange - arrange uicontrol objects in rows and columns
                                                                                     
     CALL                                                                            
     	lm_arrange(hframe,varargin)                                                                   
                                                                                     
     INPUT        
       input comes in parameter-name,value pairs (parameter name not case
       sensitive)
       LMARGE, value: margin left (Default =10)
                      LMARGE is a scalar  
       RMARGE, value: margin right (Default =10)
                      RMARGE is a scalar  
       HMARGE, value: margin between, horizontal (Default =5)
                      HMARGE may be specified as a vector or scalar  
       TMARGE, value: margin top (Default =15)
                      TMARGE is a scalar  
       BMARGE, value: margin below (Default =6)
                      BMARGE is a scalar  
       VMARGE, value: margin between, vertical (Default =10)
                      VMARGE may be specified as a vector or scalar  
       PIXELW, value: pixel width of frame (default: compute)
       PIXELH, value: pixel height of frame (default: compute)
       NORESIZE, value: if set, do not resize frame
       HEQUAL, value: if set, distribute Horizontally (default: 0)
       VEQUAL, value: if set, distribute Vertically (default: 0)
       HNORM, (0,1) if 1: normalize  horizontally (use full frame width)
       VNORM, (0,1) if 1: normalize  vertically (use full frame height)
       HCENTER, (0,1,2) if 0: left align
                        if 1: center items in horizontal direction
                        if 2: right align items in horizontal direction
                NOTE: if HNORM==1 the HCENTER option is ignored
       VCENTER, (0,1,2) if 0: top align
                        if 1: center items in vertical direction
                        if 2: bottom align
                NOTE: if VNORM==1 the VCENTER option is ignored
  
   INDIRECT INPUT
       object application data (See also lm_set):
           keeppixelsize: set to 1 to prevent changing pixelsize
           ignoreh      : set to 1 to prevent using height to compute row
                          pixel height
           ignorew      : set to 1 to prevent using width to compute column
                          pixel width
           pixelpos     : if set, pixelpos is not recomputed
           normpos      : if option HNORM is active, element 3 of normpos is
                          used (EXCEPTION: if object is spread over more
                          columns, its normalized width is not used)
       object attributes
           pos
           type
           extent
     OUTPUT 
         pixpos:[pixpos(1) pixpos(2] extent van objecten, inclusief marges    
         raster: Coordinates of raster. Suppose raster is M x N:
            raster.x.pixelpos (length N+1)
            raster.x.normpos  (length N+1)
            raster.y.pixelpos (length M+1)
            raster.y.normpos  (length M+1)
     AANPAK                                                                          
           
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

15-Apr-2010 10:23:34

Size:

3670 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdarrange.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ModelitUtilRoot>getuicpos.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>jacontrol>tableWindow.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_childframes.m

(back to table of contents)
   lm_childframes - haal de frames op die direct onder het opgegeven
                         frame hangen
  
   CALL:
    h_frames = lm_childframes(hframe)
  
   INPUT:
    hframe:      <handle> van het parent frame
   
   OUTPUT:
    h_frames     <handle> van de children frames van hframe
  
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

733 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>ur_getframechildren.m

Is called by functions:

ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m

(back to table of contents)
     lm_createframe - maak een lm_resize frame aan
                                                                                     
     CALL                                                                            
     	h=lm_createframe(handle,'property', value, 'property', value)                                                                   
     	h=lm_createframe('property', value, 'property', value)                                                                   
                                                                                     
     INPUT             
   	handle: handle van parent frame.
               Als er geen parenthandle wordt opgegeven, 
               dan wordt het current figuur de parent
   	'property'/value : 
               Niet default eigenschappen van het frame.
               Deze hoeven alleen te worden opgegeven voor de niet-default waarden.
               Mogelijke properties:
   
   PROPERTY         BETEKENIS
  ======================================================================
   'active'         zichtbaarheid van het frame en alle children
                    true==> zichtbaar
                    false==> niet zichtbaar
   'border'        (default=true)
                    zichtbaarheid van de rand van het frame en het frame zelf
                    true==> zichtbaar
                    false==> onzichtbaar
                    LET OP!: de rand van het frame wordt op de inborder getekend
   'enable'         enable properties van dit frame en alle children
   'exitbutton'     (default=false)
                    aanwezigheid van exitbutton
   'exitfunction'   functie die wordt aangeroepen indien frame gedeactiveerd wordt
   'lineprops'      (default: [])
                    Eigenschappen van de line die het frame markeert
                    zie Matlab - line voor meer informatie
                    VOORBEELD: ...,'lineprops',lm_lineprops('color','k','shadowed',0 ),...
                               ...,'lineprops',lm_lineprops,...
   'shadowed'       eigenschap: (default true)
                    Wanneer property lineprops is gezet zorgt shadowed ervoor
                    dat er consequent een schaduw wordt getekend.
   'maxpixelsize'   (default=[inf inf]) 
                    When pixelsize is set this defines the maxvalue (per
                    dimension)
   'minmarges'      marge in pixels voor dit frame [LINKS ONDER RECHTS BOVEN] 
                    TEN OPZICHTE VAN PARENT FRAME!! (dus niet tov van child frames)
                    LET OP!: de rand van het frame wordt op de inborder getekend
   'normposition'   positie van topframe tov van figure (normalized)
   'normsize'       (default=[1 1])
                    Afmetingen van het frame in genormaliseerde coordinaten
                    LET OP: door de pixelsize NaN op te geveb wordt deze berekend 
                    als de som van de ACTIEVE subframes
   'parenthandle'   handle van parent frame (meestal alseerste argument doorgegeven)
                    nodig indien een top frame in een niet-current scherm wordt aangemaakt
   'patchprops'    (default: [])
                    Eigenschappen van de patch die het frame markeert
                    zie Matlab - patch voor meer informatie
                    VOORBEELD: ...,'patchprops',lm_patchprops('facec',C.WINCOLOR,'linew',1),...
               
   'pixelposition'  positie van topframe tov van figure (in pixels)  
   'pixelsize'      (default=[0 0])
                    Afmetingen van het frame in pixel coordinaten
   'rank'           (default=0)
                    Plaats van het scherm: 
                       bij horizontale splitsing: hoe hoger hoe meer naar rechts
                       bij verticale splitsing: hoe hoger hoe meer naar beneden
   'slider'         handle van een slider object
                    de children frames en objecten worden afhankelijk van de 
                    slider instelling geplaatst.
   'splithor'       (default= omgekeerde van splitsings richting van parent)  
                    true==> splits horizontaal
                    false==> splits verticaal
   'title'         af te drukken titel string
                   
     OUTPUT                                                                          
     	h:  de handle van het gemaakte frame       
        
   EXAMPLES
   Example -1-
   Create a figure that sizes to fit contents exactly:
   hfig=lm_createframe(HWIN,'splithor',0,'pixelsize',[NaN NaN],'normsize',[0 0]);
   
   Example -2-
   Create a figure that sizes to fit contents but does not shrink the figure:
   hfig=lm_createframe(HWIN,'splithor',0,'pixelsize',[NaN NaN],'normsize',[1 1]);
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

5180 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdcreateframe.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ModelitUtilRoot>getuicpos.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_deleteframe.m

(back to table of contents)
  delete frame and all dependent items
  lookfor child frames
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

478 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbd_deleteframe.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_doubleframe.m

(back to table of contents)
  Creeer een frame dat kan worden geminimaliseerd
   INPUT
     h_parent : parent frame
     titlestr : titel
     outer_frame_opt  : cell array met opties voor buitenste frame
                        Default properties:
                                'normsize',[1 0],...
                                'pixelsize',[0 NaN],...
                                'border',0,...
                                'splithor',0
     inner_frame_opt  : cell array met opties voor binneste frame
                        Default properties:
                                'normsize',[1 1],...
                                'lineprops',lm_lineprops,...
                                'active',1
   
   OUTPUT
     h_ItemFrame: frame waarin getekend kan worden
     h_frame: buitenste frame
   
   ZIE OOK
      equivalent aan lm_createframe
   
   EXAMPLE
   	lm_doubleframe(h_parent,'Edit object',{'rank',1,'tag','EDITOR'},{})
   	lm_doubleframe(h_parent,'Edit object',{'tag','EDITOR'})
   	lm_doubleframe(h_parent,'Edit object')
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

1463 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbddoubleframe.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_exitbutton.m

(back to table of contents)
  lm_exitbutton - maak voor een frame een aparte en willekeurig te plaatsen
  exit button aan default wordt de button rechts boven geplaatst.
   
   INPUT:
    hparent:  handle van parent frame
    BACKG:    color for transparant part of button
    callback: eventueel extra aan te roepen callback bij sluiten frame
   
   OUTPUT:
    h: handle van button
       
   EXAMPLE:
       positioneer button rechts onder
       h=lm_exitbutton(hparent)
   				h=lm_exitbutton(h_hlp)
   				setappdata(h,'normpos',[ 1 1 0 0]);
   				setappdata(h,'pixelpos',[-14 -14 12 12]);
  
  See also: lm_exittext, lm_frameonoff

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

15-Sep-2008 10:29:30

Size:

1052 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdcreateexitbutton.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_initaxes.m

(back to table of contents)
   lm_initaxes - 
   
   CALL:
    h = lm_initaxes(HWIN,LAYER)
   
   initialize pixel axes for this window
   
   INPUT
       HWIN: window for which pixel axes will be set (defaults to gcf)
       LAYER: Layer number. If needed, multiple axes objects can be created
       to enable plotting in different layers. Frames plotted in the current
       axes obscure lines and text objects in other layers
           
   OUTPUT
       h: handle of pixel axes for layer LAYER
       
   EXAMPLE    
       hax=lm_initaxes;
       h=text(1,1,'my text','parent',hax);
       lm_linkobj(h,hframe,'pixelpos',[ 10 10 20 20]);
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:56:52

Size:

1061 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbd_initialize_axis.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>get_constants.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m

(back to table of contents)
   Shadowed : 1==> apply shadow
              0==> do not apply
  SEE ALSO: lm_patchprops
   s=struct('xdata',[],'ydata',[],'facecolor','none','hittest','off','faceli','gouraud');
   s=struct('XData',[],'YData',[],'Color',[  0.6758  0.6602 0.6016],'HitTest','off','LineWidth',1,'Shadowed',1); %hoofdletters zijn belangrijk ivm mbd_frame_edit
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

750 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdlineprops.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m

(back to table of contents)
     lm_linkobj - linkt een object aan een mbdframe
                                                                                     
     CALL                                                                            
     	lm_linkobj(hobj, hframe, property, value, property, value,...)   
     	lm_linkobj(hobj, hframe, struct(property, value))   
                                                                                     
     INPUT                                                                           
       hobj  : object or array of handles or jacontrol object
       hframe: frame to link to
       property: char string containg property name
       value:  corresponding property value. Note: property/value
               combinations may als be passed on as a tructure.
   
       <propertye, value>
              clipframe
                     see lm_resize
              clipping [0 or 1]
                     clip object if out of frame borders
              enable
                     Default: enable status is copied from application data
                     "enable" from frame.
                     Note
                     <on> and <off> is supported. <inactive> is not supported.
                          Object  |          Frame
                          enabled |       enabled status
                                   'Frame=on' 'Frame=off' 'Frame=inactive'
                          ========================================== 
                          0  ==>   'off'      'off'       <not supported>
                          1  ==>   'on'       'off'       <not supported>
                          2  ==>   'inactive' 'off'       <not supported>
                          3  ==>   'off'      'off'       <not supported>
                          4  ==>   'on'       'on'        <not supported>
                          5  ==>   'inactive' 'inactive'  <not supported>
              keeppixelsize : is 1 maintain pixel height and width while alignigning in matrix 
              keepypos: if 1 ==> position of slider has no effect on this
                                 object
              normpos [X,Y,WIDTH,HEIGHT]
                     normalized position relative to LL corner of frame
              pixelpos [X,Y,WIDTH,HEIGHT]
                     pixel position relative to LL corner of frame
              visible
                          0  ==> do not show
                          1  ==> show
              row: align on position (row,col) in matrix
              col: align on position (row,col) in matrix
   
     OUTPUT                                                                          
         none                                                                                
         
     AFFECTED OBJECTS
         -1- affected application data of frame:
             when an object is linked to a frame, this will affect the following
             fields of application data of this frame:
               uichildren
               textchildren
               children
               javachildren
         -2- affected properties of object:
               parent: when object-parent differs from frame-parent
               units : set to "pixel" when object is of type
                       text,uicontainer,hgjavacomponent
         -3- affected application data of object, required: 
               normpos
               pixelpos
               visible
               enable
               clipping
               keepypos
         -4- affected application data of object, optional: 
               clipframe
               row
               col
               keeppixelsize
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

4131 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdlinkobj.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ModelitUtilRoot>getuicpos.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkslider2frame.m

(back to table of contents)
   lm_linkslider2frame - maak y-positie van content van frame afhankelijk
   van slider
   
   INPUT
       hslid: handle van slider object
       targetframe: target frame. De inhoud van dit frame wordt verticaal
       veplaatst als functie van slider
   
   OUTPUT
       geen directe output. slider handle wordt opgeslagen in target frame
       onder property "slider"
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

816 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdlinkslider2frame.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m

(back to table of contents)
   SEE ALSO: lm_lineprops
   s=struct('xdata',[],'ydata',[],'facecolor','none','hittest','off','faceli','gouraud');
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

525 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdpatchprops.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ModelitUtilRoot>htmlWindow.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m

(back to table of contents)
  get pixelsize of frame that depends on children
   
   INPUT
   hframe: frame handle
   
   OUTPUT
   pixelsize: pixel size of frame
   
   EXAMPLE 1: keep centre of figure unchanged
       hmain=lm_createframe(HWIN,'splithor',0,'pixelsize',[NaN NaN],'norms',[0 0]);
       lm_createframe(hmain,'pixelsize',[47 20],'norms',[1 1]);
       lm_createframe(hmain,'pixelsize',[20 58],'norms',[1 1]);
       pixelsize=lm_pixelsize(hframe);
       pos=get(HWIN,'pos');
       mid=pos(1:2)+pos(3:4)/2';
       set(HWIN,'pos',[mid 0 0]+[-pixelsize/2 pixelsize]);
       lm_resize
  
   EXAMPLE 2: position figure in the middle of the screen
       pixelsize=lm_pixelsize(h_main);
       scrsz=get(0,'screens');
       mid=scrsz(3:4)/2;
       set(HWIN,'pos',[mid 0 0]+[-pixelsize/2 pixelsize]);
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

1214 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdpixelsize.m

Is called by functions:

ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m

(back to table of contents)
     lm_resize - resize het figuur en alle objecten in het figuur
  
     CALL
     	callback functie voor ResizeFcn
  
     INPUT
       hfig : figure handle
       event: not used
  
     OUTPUT
       All frames created with "lm_createframe" and all objects linked to
       frames with "lm_linkobj" are positioned in a figure.
   
   EXAMPLE
       lm_resize(HWIN);
       set(HWIN,'Vis','on','ResizeFcn',@lm_resize);
  
     AANPAK
    - maak een lijst van alle zichtbare lm_resize frames
    - zet alle objecten die in de MBD frames zitten uit
    - zet alle exit buttons uit
    - pas de sliderheight aan als de hoogte van het figuur groter is dan de sliderheight
    - pas de sliderheight aan
    - bereken de nieuwe posities van de lm_resize frames (inclusief de exit buttons)
    - zet de exit buttons van de zichtbare MBD frames weer aan
    - bepaal de sliderpositie
    - scroll het scherm tot de slider value weer klopt met het zichtbare scherm
    - bepaald voor alle zichtbare lm_resize frames de posities van de bijhorende objecten
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

1468 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdresize.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ModelitUtilRoot>getuicpos.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_set.m

(back to table of contents)
     lm_set - change property of individual object after properties for a
              group have been set lm_link_obj.
  
  CALL
      lm_set([h1,h2..],...
          'normpos',NP,...
          'pixelpos',PP,...
          'visible',V,...
          'enable',E,...
          'clipping',C,...
          'clipframe',CF,...
          'keepypos',K,...
          'keeppixelsize',KP) 
  
  INPUT:
      [h1,g2,..]
          Array of handles for which properties will be changed
      Property-Value pairs
          See lm_linkobj for descriptions
  
  See also: lm_linkobj

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2010 15:22:36

Size:

2131 bytes

Calls functions:

ModelitUtilRoot>assertm.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ModelitUtilRoot>htmlWindow.m

(back to table of contents)

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_sortframes.m

(back to table of contents)
     sortframes - maak een gesorteerde lijst van lm_resize frames                    
                                                                                     
     CALL                                                                            
     	h=sortframes                                                                   
                                                                                     
     INPUT                                                                           
                                                                                     
     OUTPUT                                                                          
       FrameData[]:   verzamelde informatie per frame                        
       +----stack[]: debug informatie                     
       |    +----file (char array)      
       |    +----name (char array)      
       |    +----line (double)          
       +----treetop (logical)           
       +----parenthandle (double)       
       +----rank (double)               
       +----normsize (double array)     
       +----pixelsize (double array)    
       +----maxpixelsize (double array) 
       +----normposition (double array) 
       +----pixelposition (double array)
       +----enable (logical)            
       +----splithor (double)           
       +----border (double)             
       +----exitbutton (logical)        
       +----exitfunction (char)         
       +----active (logical)            
       +----exitbuttonhandle (double)   
       +----minmarges (double array)    
       +----children (double)           
       +----textchildren (double)       
       +----javachildren (double)       
       +----uichildren (double)         
       +----slider (double)             
       +----patchhandle (double)        
       +----linehandle (double)         
       +----shadowlinehandle (double)   
       +----level (double)              
       +----showslider (double)         
       +----handle (double)             
       +----inborderpos (double)        
       +----outborderpos (double)       
       +----activenode (double)         
       +----enablednode (logical)  
   
       parentIndex[]: corresponderende lijst met parent indices
                                                                                     
     AANPAK                                                                          
                                                                                     
    - maak een lijst van alle frames                                                 
    - verwijder alle frames die niet met createMBDframe zijn aangemaakt uit de lijst  
    - bepaal het level van de overgebleven frames
    - sorteer deze levels oplopend
    - bereken eigenschap "pixelsize"
 

Path:

ModelitUtilRoot\MBDresizedir\LayoutManager

Last modified:

29-Jun-2008 23:54:19

Size:

3296 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>mbdsortframes.m

Is called by functions:

ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>MBDresizedir>mbdpixelsize.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>addprefModelit.m

(back to table of contents)
 WIJZ ZIJPP 20100415
 This file was modified to obtain a more robust behaviour in compiled mode
 Preference files are now stored in local directory (pwd)
 File is identical to "addpref" but all calls to "prefutils" are replaced by
 calls to "prefutilsModelit"

Path:

ModelitUtilRoot\PublicFiles

Last modified:

15-Apr-2010 11:45:39

Size:

1535 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>isprefModelit.m
ModelitUtilRoot>PublicFiles>setprefModelit.m

Is called by functions:

ModelitUtilRoot>PublicFiles>getprefModelit.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>getprefModelit.m

(back to table of contents)
 WIJZ ZIJPP 20100415
 This file was modified to obtain a more robust behaviour in compiled mode
 Preference files are now stored in local directory (pwd)
 File is identical to "getpref" but all calls to "prefutils" are replaced by
 calls to "prefutilsModelit"

Path:

ModelitUtilRoot\PublicFiles

Last modified:

15-Apr-2010 11:42:10

Size:

4014 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>addprefModelit.m
ModelitUtilRoot>PublicFiles>prefutilsModelit.m

Is called by functions:

ModelitUtilRoot>defaultpathNew.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>isprefModelit.m

(back to table of contents)
 WIJZ ZIJPP 20100415
 This file was modified to obtain a more robust behaviour in compiled mode
 Preference files are now stored in local directory (pwd)
 File is identical to "ispref" but all calls to "prefutils" are replaced by
 calls to "prefutilsModelit"

Path:

ModelitUtilRoot\PublicFiles

Last modified:

15-Apr-2010 11:40:20

Size:

1614 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>prefutilsModelit.m

Is called by functions:

ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>PublicFiles>addprefModelit.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>plot_geo.m

(back to table of contents)
  plot_geo - plot topografie en kaartbladen
  
  CALL
      plot_geo(h_kaart,kaartblad,setlabels,coord,mode)
      
  INPUT
      h_kaart <axes handle>:
          handles of axes objects that will hold plotted objects
          defaults to gca
      kaartblad <logical>:
          if True, plot "kaartblad" layer 
          defaults to True
      setlabels <logical>
          if True add labels that will appear in legend
          defaults to True
      coord <string>
          coordinate system of axes "h_kaart". If anaything else then RD,
          coordinates will be transformed.
          defaults to 'RD'        
      mode <string>
          if mode=="noordzee" additional stylistic info is plotted
          mode defaults to nederland"
      
  INDIREC INPUT
      File: 'Kaartbladen.w3h'
      
  OUTPUT
      This function returns no output arguments

Path:

ModelitUtilRoot\PublicFiles

Last modified:

13-Apr-2010 19:06:35

Size:

4842 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>rootpath.m
ModelitUtilRoot>RWSnat>CrdCnv.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>mbdlabel.m
ModelitUtilRoot>zoomtool.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>get_constants.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>prefutilsModelit.m

(back to table of contents)
 Identical to prefultils but retrieve preference files from pwd
 location in compiled mode.

Path:

ModelitUtilRoot\PublicFiles

Last modified:

15-Apr-2010 12:48:24

Size:

3572 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>PublicFiles>getprefModelit.m
ModelitUtilRoot>PublicFiles>isprefModelit.m
ModelitUtilRoot>PublicFiles>setprefModelit.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>rootpath.m

(back to table of contents)
  rootpath - prepend exeroot for files that are specified without path in
             disployed mode 
  
  CALL
      fname=rootpath(fname)
      
  INPUT
      fname: file specified without a path
      
  OUPUT
      fname
          If not deployed mode or fname was specified with path: input.fname
          Otherwise: fname =fullfile(exeroot,input.fname)

Path:

ModelitUtilRoot\PublicFiles

Last modified:

20-Apr-2009 11:34:58

Size:

995 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>installjar.m
ModelitUtilRoot>@filechooser>filechooser.m

(back to table of contents)

ModelitUtilRoot>PublicFiles>setprefModelit.m

(back to table of contents)
 WIJZ ZIJPP 20100415
 This file was modified to obtain a more robust behaviour in compiled mode
 Preference files are now stored in local directory (pwd)
 File is identical to "setpref" but all calls to "prefutils" are replaced by
 calls to "prefutilsModelit"

Path:

ModelitUtilRoot\PublicFiles

Last modified:

15-Apr-2010 12:18:15

Size:

2168 bytes

Calls functions:

ModelitUtilRoot>PublicFiles>prefutilsModelit.m

Is called by functions:

ModelitUtilRoot>defaultpathNew.m
ModelitUtilRoot>PublicFiles>addprefModelit.m

(back to table of contents)

ModelitUtilRoot>RWSnat>CrdCnv.m

(back to table of contents)
  CrdCnv - convert coordinates
  
  CALL
      [crd_out,errorcode] = CrdCnv(crd_type_in,crd_in,crd_type_out)
      
  INPUT
    crd_type_in :<string> input coordinate type
    crd_in      : input coordinates (2 element vector)
    crd_type_out:<string> output coordinate type
  
  OUTPUT
      crd_out: output coordinates (2 element vector)
      errorcode: if error occurs, the errorcode from the C source is
              returned
  
  NOTE:
      This function calls a mex file 
      To build:
      mcc -x -d build CrdCnv crdcnv_external.c crdcnvmd.c
  
      C prototype
      CrdCnvMD (  char  crd_type_in[4], long   crd_in_1, long   crd_in_2,
            char crd_type_out[4], long *crd_out_1, long *crd_out_2,
            long          *error )

Path:

ModelitUtilRoot\RWSnat

Last modified:

16-Aug-2008 18:47:24

Size:

1734 bytes

Calls functions:

ModelitUtilRoot>RWSnat>crdcnv_mex.dll
ModelitUtilRoot>postcode2pos.m

Is called by functions:

ModelitUtilRoot>PublicFiles>plot_geo.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ModelitUtilRoot>ANY2WGS.m
ModelitUtilRoot>diaroutines>displayStations.m

(back to table of contents)

ModelitUtilRoot>RWSnat>crdcnv_mex.dll

(back to table of contents)

Path:

ModelitUtilRoot\RWSnat

Last modified:

29-Oct-2004 15:35:50

Size:

36864 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>RWSnat>CrdCnv.m

(back to table of contents)

ModelitUtilRoot>diaroutines>ComposeDiaList.m

(back to table of contents)
  ComposeDiaList - Make a list of DIA structures that can be displayed in a
  Java table.
  
  CALL:
   Contents = ComposeDiaList(dialist, fields)
  
  INPUT:
   dialist:
    Struct array with Donar data blocks, see emptyblok for the format.
   fields:
    Cellstring, information to be displayed in table, possible values:
     - 'Locatiecode','Locatie'
     - 'Parameter'
     - 'Veldapparaat'
     - 'Analysecode'
     - 'Tijdstap'
     - 'Begindatum'
     - 'Einddatum'
  
  OUTPUT:
   Contents:
    Structure with fields:
     - header: Cellstring with columnnames.
     - data: Cell array with data.
  
  See also: jacontrol

Path:

ModelitUtilRoot\diaroutines

Last modified:

29-Apr-2010 14:12:50

Size:

2987 bytes

Calls functions:

ModelitUtilRoot>strvscat.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>diaroutines>bepaal_tijdstap.m

(back to table of contents)
  bepaal_tijdstap - Determine timestep of given time axis.
  
  CALL:
   [tijdstapeenheid, tijdstap] = bepaal_tijdstap(taxis, mode)
  
  INPUT:
   taxis: 
    Vector of Matlab datenum.
   mode:  
    (Optional) string with possible values:
        'TE' (default) - Assume an equidistant timeseries, tijdstap is the
                         smallest found timestep, this is useful when the 
                         timeseries has missing values.
        otherwise      - If timestep is always equal --> TE timeseries.
                         Otherwise                   --> TN timeseries.
  
  OUTPUT:
   tijdstapeenheid: 
    String with possible values, empty if TN timeseries:
      - 'd' days
      - 'min' minute
      - 's' seconds
      - 'cs' centiseconds
  
   tijdstap:
    Integer with timestep in tijdstapeenheid units, empty if TN timeseries.
  
  See also: cmp_taxis, set_taxis

Path:

ModelitUtilRoot\diaroutines

Last modified:

16-Feb-2010 17:37:42

Size:

2132 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>diaroutines>interp_blok.m

(back to table of contents)

ModelitUtilRoot>diaroutines>checkRKS.m

(back to table of contents)
  CALL
      rc=checkRKS(RKS)
      
  INPUT
      RKS
          structure with RKS data
  
      OUTPUT
          rc
              0 : ok
              -20001 : lBegdat not ok
              -20002 : lEnddat not ok
              -20003 : iBegtyd not ok
              -20004 : iEndtyd not ok
              -20005 : end before start

Path:

ModelitUtilRoot\diaroutines

Last modified:

02-Aug-2010 18:10:27

Size:

1736 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>writedia_R14.m

(back to table of contents)

ModelitUtilRoot>diaroutines>cmp_taxis.m

(back to table of contents)
  cmp_taxis - Compute time axis for Donar timeseries.
  
  CALL:
   taxis = cmp_taxis(s, N, SIGNIFIKANTIE)
  
  INPUT:
   s: 
    structure with the following relevant fields (Donar RKS block).
     lBegdat: e.g. 19980101
     iBegtyd: e.g. 1430
     sTydehd: 'min'
     iTydstp: 10
     lEnddat: 19980228
     iEndtyd: 2350
   N: 
    (Optional) total number of datapoints for checking.
  SIGNIFIKANTIE: 
    (Optional) timeaxis precision, default value: 1440(minutes),
    if necessary specify second argument N eventueel as [].
  
  OUTPUT
   taxis: 
    Vector of Matlab datenum with the equidistant times.
  
  APPROACH:
   Converteer opgegeven begin- en eindtijdstip naar matlab datenum.
   Bereken de stapgrootte.
   Let op! bij coderen was complete lijst met mogelijkheden niet voorhanden!
   alleen de eenheid 'min' is geverifieerd.
   bouw het taxis array.
  
   Wanneer ook een tweede argument beschikbaar is wordt het aantal tijdstappen
   gecontroleerd.
   In geval van een inconsitentie volgt een melding.
   Het aantal opgegeven datapunten in N is dan maatgevend.
  
  See also: select_interval

Path:

ModelitUtilRoot\diaroutines

Last modified:

17-May-2009 16:38:02

Size:

2705 bytes

Calls functions:

ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>long2datenum.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m
ModelitUtilRoot>diaroutines>dia_merge.m
ModelitUtilRoot>diaroutines>interp_blok.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)

ModelitUtilRoot>diaroutines>combineRKS.m

(back to table of contents)
  combineRKS - Combine two or more RKS (Reeksadministratie) blocks.
  
  CALL:
   RKS = combineRKS(oldRKS, newRKS)
  
  INPUT:
   oldRKS: 
    Struct or struct array with one or more existing RKS blocks.
   newRKS:
    Struct or struct array with RKS block to be added.
  
  OUTPUT:
   RKS:
    Structure with combined RKS blocks.
    
  APPROACH:
   The period is extended from first to last observation.
   There are two different ways to call this function:
   1. incremental: 1 RKS is added.
   2. parallel: A struct array of RKS blocks is added.
  
  See also: emptyRKS

Path:

ModelitUtilRoot\diaroutines

Last modified:

16-Nov-2009 21:24:14

Size:

2556 bytes

Calls functions:

ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>long2datenum.m

Is called by functions:

ModelitUtilRoot>diaroutines>dia_merge.m

(back to table of contents)

ModelitUtilRoot>diaroutines>datenum2long.m

(back to table of contents)
  datenum2long - Convert Matlab datenum to date with format YYYYMMDD, 
  time with format HHmm and time with format HHmmSS.
 
  CALL:
   [Date, Time, LongTime] = datenum2long(D, timeunit)
 
  INPUT:
   D:
    Scalar, vector or matrix with datenum data.
  timeunit:
    Opional argument with possible values:
        - 'mnd': Donar uses different format for months.
        - otherwise: Use standard Donar date format.
  
  OUTPUT:
   Date: 
    Corresponding date(s) in YYYYMMDD.
   Time:
    Corresponding time(s) in HHmm.
   LongTime:
    Corresponding time(s) in HHmmSS.
 
  APPROACH:
   Round D to whole minutes:
   - Add 30 seconds to D and call datevec.
   - Ignore 'second' output argument.
  
  NOTE:
   .m source of this funciton is used in mwritedia.c.
  
  See also: long2datenum

Path:

ModelitUtilRoot\diaroutines

Last modified:

17-Aug-2008 14:59:28

Size:

2448 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>emptydia.m
ModelitUtilRoot>diaroutines>set_taxis.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ModelitUtilRoot>diaroutines>defaultdia.m
ModelitUtilRoot>diaroutines>emptyRKS.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m

(back to table of contents)

ModelitUtilRoot>diaroutines>defaultdia.m

(back to table of contents)
  defaultdia - Fill dia with default values.
                                                                                                 
  CALL:                                                                                         
   S = defaultdia(S)
                                                                                                 
  INPUT:                                                                                     
   S:
    DIA structure.
                                                                                                 
  OUTPUT:
   S:
    DIA structure with default values.                                                      
                                                                                                 
   APPROACH:                                                                                     
    Check if IDT block is present.                                                                                              
    If IDT present: fill IDT block with default values with subroutine defaultIDT.            
    If IDT not present: generate default IDT block with subroutine defaultIDT.              
    Check if one ore more series are present.
    If series present: fill series with default data with subroutine DefaultData.
                                                                                                 
  See also: dimspecs                                                                                

Path:

ModelitUtilRoot\diaroutines

Last modified:

19-Aug-2008 07:02:26

Size:

19184 bytes

Calls functions:

ModelitUtilRoot>diaroutines>datenum2long.m
ModelitUtilRoot>diaroutines>dimspecs.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m

(back to table of contents)

ModelitUtilRoot>diaroutines>dia_merge.m

(back to table of contents)
  dia_merge - Merge two equidistant timeseries.
  
  CALL:
   [dia_new, missing, total] = dia_merge(dia_old, dia_new, SIGNIFIKANTIE, copyhiaat)
  
  INPUT:
   dia_old:
    Structure with existing DIA.
   dia_new:
    Structure with DIA to be added (overwrite when necessary).
   SIGNIFIKANTIE:
    (Optional) integer with time axis precision, e.g. 1440 for minutes.
   copyhiaat:
    (Optional) True -> overwrite existing dia with missing values.
               False -> do not overwrite existing dia with missing values.
  
  OUTPUT:
   dia_new:
    Structure with merged timeseries.
   missing:
    Integer with total number of values which could not be filled in the 
    new time axis. 
  total:
    Integer with total number of new datapoints in new taxis.
  
  See also: mergeDias

Path:

ModelitUtilRoot\diaroutines

Last modified:

30-Nov-2009 12:16:00

Size:

3821 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>combineRKS.m
ModelitUtilRoot>diaroutines>emptyWRD.m
ModelitUtilRoot>is_in.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m

(back to table of contents)

ModelitUtilRoot>diaroutines>dimspecs.m

(back to table of contents)
  dimspecs - Read fieldnames as used in the Donar Interface Modules.
  
  CALL:
   [veld_empty, veld_0, veld_999, veld_99, veld_NVT, veld_NietVanToepassing] = dimspecs(blok)
  
  INPUT:
   blok: 
    Structure with Donar data blok, with supported fields: 'W3H','MUX',
    'SGK','RGH','TYP','RKS','TPS','WRD'.
  
  OUTPUT:
   veld_empty:
    fields with defaultvalue ''.
   veld_0:
    fields with defaultvalue 0.
   veld_999:
    fields with defaultvalue -99.
   veld_99:
    fields with defaultvalue -999999999.
   veld_NVT:
    fields with defaultvalue 'NVT'.
   veld_NietVanToepassing:
    fields with defaultvalue 'Niet Van Toepassing'.
  
  APPROACH:
   Define output as constants.
  
  See also: defaultdia

Path:

ModelitUtilRoot\diaroutines

Last modified:

19-Aug-2008 07:09:52

Size:

4571 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>defaultdia.m

(back to table of contents)

ModelitUtilRoot>diaroutines>displayStations.m

(back to table of contents)
  displayStations - Display the stations contained in a dia block in a 
  specified axis.
  
  CALL:
   displayStations(h_map, blok, labels, S)
  
  INPUT:
   h_map:
    Handle of axis in which to plot the stations.
   blok:
    Struct array with location information, see emptyblok for format of a 
    dia block.
   labels:
    true -> plot station labels and location.
    false -> plot station location only.
   S:
    Struct array with markup for stations, with fields:
        - color:           Colour triple [r g b].
        - markerfacecolor: Colour triple [r g b].
        - marker:          String, see Matlab plot function.
        - markersize:      Integer.
        - fontsize:        Integer.
        - legenda:         String to be displayed in legend.
        - linewidth:       Integer indicating the width of the marker edge.
        - callback:        Function handle of function to call when the 
                           station is clicked on.
        - locatie:         Char array with stationcodes(sLoccod), 
                           use 'default' to specify default marker.
  
  OUTPUT:
   No direct output, the stations specified in the dia blocks are displayed
   in the axis with the specified markers.
  
  See also: emptyblok

Path:

ModelitUtilRoot\diaroutines

Last modified:

06-Apr-2009 08:37:32

Size:

3909 bytes

Calls functions:

ModelitUtilRoot>RWSnat>CrdCnv.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>diaroutines>duration.m

(back to table of contents)
  duration - Calculate duration of a timeunit in Matlab datenum units.
  
  CALL:
   d = duration(timeunit)
  
  INPUT:
   timeunit: 
    String with possible values:
        - 'mnd' months;
        - 'd'   days;
        - 'min' minutes;
        - 'uur' hours;
        - 'cs'  centiseconds.
  
  OUTPUT:
   d: 
    Duration of the given timeunit in Matlab datenum units.
  
  See also: cmp_taxis

Path:

ModelitUtilRoot\diaroutines

Last modified:

15-May-2009 11:15:40

Size:

897 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m
ModelitUtilRoot>diaroutines>combineRKS.m

(back to table of contents)

ModelitUtilRoot>diaroutines>emptyRKS.m

(back to table of contents)
  emptyRKS - Make default RKS (Reeksadministratie) block.
  
  CALL:
   RKS = emptyRKS
  
  INPUT:
    No input required.
  
  OUTPUT:
   RKS:
    Structure with fields:
      +----sRefvlk (char)
      +----lBemhgt (double)
      +----lBegdat (double)
      +----iBegtyd (double)
      +----sSyscod (char)
      +----sTydehd (char)
      +----iTydstp (double)
      +----lXcrdgs (double)
      +----lYcrdgs (double)
      +----lVakstp (double)
      +----lEnddat (double)
      +----iEndtyd (double)
      +----sRkssta (char)
      +----lBeginv (double)
      +----lEndinv (double)
      +----sVzmcod (char)
      +----sVzmoms (char)
      +----sSvzcod (char)
      +----sSvzoms (char)
      +----sSsvcod (char)
      +----sSsvoms (char)
      +----sSsscod (char)
      +----sSssoms (char)
      +----lXcrdwb (double)
      +----lYcrdzb (double)
      +----lXcrdob (double)
      +----lYcrdnb (double)
      +----lXcrdmn (double)
      +----lYcrdmn (double)
      +----lXcrdmx (double)
      +----lYcrdmx (double)
  
  See also: emptyblok

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 12:42:04

Size:

3518 bytes

Calls functions:

ModelitUtilRoot>diaroutines>datenum2long.m

Is called by functions:

ModelitUtilRoot>diaroutines>emptyblok.m

(back to table of contents)

ModelitUtilRoot>diaroutines>emptyW3H.m

(back to table of contents)
  emptyW3H - Make default W3H (W3H administratie) block.
  
  CALL:
   W3H = emptyW3H
  
  INPUT:
    No input required.
  
  OUTPUT:
   W3H:
    Structure with fields:
      +----sMuxcod (char)  
      +----sMuxoms (char)  
      +----lWnsnum (double)
      +----sParcod (char)  
      +----sParoms (char)  
      +----sCasnum  
      +----sStaind (char)  
      +----nCpmcod (double)
      +----sCpmoms (char)  
      +----sDomein (char)  
      +----sEhdcod (char)  
      +----sHdhcod (char)  
      +----sHdhoms (char)  
      +----sOrgcod (char)  
      +----sOrgoms (char)  
      +----sSgkcod (char)  
      +----sIvscod (char)  
      +----sIvsoms (char)  
      +----sBtccod (char)  
      +----sBtlcod (char)  
      +----sBtxoms (char)  
      +----sBtnnam (char)  
      +----sAnicod (char)  
      +----sAnioms (char)  
      +----sBhicod (char)  
      +----sBhioms (char)  
      +----sBmicod (char)  
      +----sBmioms (char)  
      +----sOgicod (char)  
      +----sOgioms (char)  
      +----sGbdcod (char)  
      +----sGbdoms (char)  
      +----sLoccod (char)  
      +----sLocoms (char)  
      +----sLocsrt (char)  
      +----sCrdtyp (char)  
      +----lXcrdgs (double)
      +----lYcrdgs (double)
      +----lGhoekg (double)
      +----lRhoekg (double)
      +----lMetrng (double)
      +----lStraal (double)
      +----lXcrdmp (double)
      +----lYcrdmp (double)
      +----sOmloop (char)  
      +----sAnacod (char)  
      +----sAnaoms (char)  
      +----sBemcod (char)  
      +----sBemoms (char)  
      +----sBewcod (char)  
      +----sBewoms (char)  
      +----sVatcod (char)  
      +----sVatoms (char)  
      +----sRkstyp (char) 
  
  See also: emptyblok

Path:

ModelitUtilRoot\diaroutines

Last modified:

16-Oct-2008 13:01:24

Size:

4607 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ModelitUtilRoot>diaroutines>emptyblok.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)

ModelitUtilRoot>diaroutines>emptyWRD.m

(back to table of contents)
  emptyWRD - Make default WRD (Waarde) block.
  
  CALL:
   WRD = emptyWRD
  
  INPUT:
    No input required.
  
  OUTPUT:
   WRD:
    Structure with fields:
      +----taxis (double)  
      +----lKeynr2 (double)
      +----Wrd (double)    
      +----nKwlcod (double)
  
  See also: emptyblok

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 12:30:44

Size:

503 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>emptyblok.m
ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m
ModelitUtilRoot>diaroutines>dia_merge.m

(back to table of contents)

ModelitUtilRoot>diaroutines>emptyblok.m

(back to table of contents)
  emptyblok - Make an empty Donar data block.
  
  CALL:
   blok = emptyblok
  
  INPUT:
   No input required.
  
  OUTPUT:
   blok: 
    Donar data block, with the following required partial data blocks:
      - W3H
      - RKS
      - WRD (must contain at least one row of data)
  
      optional partial data blocks:
      - MUX
      - TYP
      - TPS
  
  See also: readdia_R14, writedia_R14, emptyDia, emptyW3H, emptyWRD, 
            emptyMUX, emptyTPS

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 13:29:16

Size:

766 bytes

Calls functions:

ModelitUtilRoot>diaroutines>emptyRKS.m
ModelitUtilRoot>diaroutines>emptyW3H.m
ModelitUtilRoot>diaroutines>emptyWRD.m

Is called by functions:

ModelitUtilRoot>diaroutines>emptydia.m

(back to table of contents)

ModelitUtilRoot>diaroutines>emptydia.m

(back to table of contents)
  emptydia - Create an empty dia.
  
  CALL:
   S = emptydia(n)
  
  INPUT:
   n: 
    Number of blocks filled with default values, default value: 0.
  
  OUTPUT:
   S: 
    Dia Structure, with fields:
      +----IDT                  
      |    +----sFiltyp (char)  
      |    +----sSyscod (char)  
      |    +----lCredat (double)
      |    +----sCmtrgl (char)  
      +----blok                 
           +----W3H (struct): see emptyW3H
           +----MUX (struct): empty, see emptyMUX
           +----TYP (struct): empty  
           +----RGH (struct): empty, see emptyRGH
           +----RKS (struct): see emptyRKS    
           +----TPS (struct): empty, see emptyTPS    
           +----WRD (struct): see emptyWRD  
    
  APPROACH:
   This function inializes the structure with the correct fields. Besides
   correct fields there are several other conditions a Dia structure must 
   satisfy.
  
  EXAMPLE:
   s=emptydia(1);
   <CHANGE STRUCTURE s>
   writedia_R14(s,'dia.dia');
  
  See also: readdia_R14, writedia_R14, emptyblok, emptyW3H, emptyWRD, emptyMUX,
            emptyTPS

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 13:48:52

Size:

1551 bytes

Calls functions:

ModelitUtilRoot>diaroutines>datenum2long.m
ModelitUtilRoot>diaroutines>emptyblok.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ModelitUtilRoot>diaroutines>interp_blok.m

(back to table of contents)
  interp_blok - Interpolate Donar block to new time axis.
  
  CALL:
   blok = interp_blok(blok, taxis, mode)
  
  INPUT:
   blok:  
    Structure with Donar data block, see emptyblok for format.
   taxis:
    Vector of Matlab datenums.
   mode: 
    String with possible values:
                   'all' - Estimate all points not in taxis AND missing 
                           values.
                   other - Estimate only missing values.
  
  OUTPUT:
   blok:
    Structure with Donar data block, see emptyblok for format.
  
  See also: cmp_taxis, emptyblok

Path:

ModelitUtilRoot\diaroutines

Last modified:

24-Feb-2010 12:27:04

Size:

4367 bytes

Calls functions:

ModelitUtilRoot>diaroutines>bepaal_tijdstap.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>set_taxis.m
ModelitUtilRoot>is_in.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m

(back to table of contents)

ModelitUtilRoot>diaroutines>long2datenum.m

(back to table of contents)
  long2datenum - Convert two Longs with date with format YYYYMMDD and time 
  with format HHmm to Matlab datenum format.
 
  CALL:
   taxis = long2datenum(taxisdatum, taxistime, timeunit)
 
  INPUT:
   taxisdate:
    Vector of Long with format YYYYMMDD.
   taxistime:
    Vector of Long with format HHmm.
 
  OUTPUT:
   taxis:
    Vector with corresponding values in Matlab datenum format.
 
  APPROACH:
   Using the Matlab 'rem' en 'round' operators Year, Month, Day, Hour and 
   minute are extracted, followed by a call to datenum to get the Matlab 
   datenum format of the specified dates.
  
  See also: datenum2long

Path:

ModelitUtilRoot\diaroutines

Last modified:

17-Aug-2008 14:51:44

Size:

1262 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ModelitUtilRoot>diaroutines>combineRKS.m

(back to table of contents)

ModelitUtilRoot>diaroutines>matroos2dia.m

(back to table of contents)
  matroos2dia - Retrieve and convert timeseries from the matroos database.
  
  CALL:
   [dia message] = matroos2dia(stuurfilename, metafilename, diafilename)
  
  INPUT:
   stuurfilename: 
    String with name of the file with timeseries to get from matroos.
   metafilename:  
    String with name of the file with metainfo (DIA).
   diafilename:   
    String with name of the file to which the DIA should be epxorted.
  
  OUTPUT:
   dia:
    Structure, for format see emptydia, empty on error.
   message:
    String with message if error has occurred.
  
  APPROACH:
   Format of the settingsfile:
  
  sLoccod  sParcod  sVatcod  source    loc        unit     
  <string> <string> <string> <string>  <string>   <string> 
  HUIBGT   WINDRTG  FASTRCDR knmi_noos huibertgat wind_direction
  
  tstart       tstop
  <string>     <string>
  200701010000 200702010000 
  
  In an extra file matroos2dia.opt the following:
  url <string> with matroos url e.g. http://matroos2/direct/get_series.php?
  proxyadres <string>  e.g. proxy.minvenw.nl
  proxypoort <integer> 80
  verbose <boolean> 1
  can be specified.
  
  For source, loc and unit see http://matroos2/direct/get_series.php?
  
  tstart and tstop have dateformat: YYYYMMDDHHmm
  
  See also: emptydia, http://matroos2/direct/get_series.php?

Path:

ModelitUtilRoot\diaroutines

Last modified:

09-Feb-2009 11:25:40

Size:

10716 bytes

Calls functions:

ModelitUtilRoot>diaroutines>bepaal_tijdstap.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>emptydia.m
ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>diaroutines>set_taxis.m
ModelitUtilRoot>diaroutines>splitlongdate.m
ModelitUtilRoot>diaroutines>writedia_R14.m
ModelitUtilRoot>getoptions.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>setProxy.m
ModelitUtilRoot>struct2char.m
ModelitUtilRoot>struct2varargin.m
ModelitUtilRoot>urlproxyread.m

Is called by functions:

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)

ModelitUtilRoot>diaroutines>readdia_R14.m

(back to table of contents)
  readdia_R14 - Read a DIA file to a Matlab structure.
  
  CALL: 
   data = readdia_R14(fname)
  
  INPUT: 
   fname: 
    String with the name of the DIA file to be read.
  
  OUTPUT:
   data: 
    Dia Structure (empty on error), with fields:
      +----IDT                  
      |    +----sFiltyp (char)  
      |    +----sSyscod (char)  
      |    +----lCredat (double)
      |    +----sCmtrgl (char)  
      +----blok                 
           +----W3H (struct): see emptyW3H
           +----MUX (struct): empty, see emptyMUX
           +----TYP (struct): empty  
           +----RGH (struct): empty, see emptyRGH
           +----RKS (struct): see emptyRKS    
           +----TPS (struct): empty, see emptyTPS    
           +----WRD (struct): see emptyWRD  
  
  See also: writedia_R14

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 12:10:58

Size:

1394 bytes

Calls functions:

ModelitUtilRoot>diaroutines>readdia_mex.mexw32
ModelitUtilRoot>extensie.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m

(back to table of contents)

ModelitUtilRoot>diaroutines>readdia_mex.mexw32

(back to table of contents)

Path:

ModelitUtilRoot\diaroutines

Last modified:

14-Aug-2008 10:06:50

Size:

118784 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>readdia_R14.m

(back to table of contents)

ModelitUtilRoot>diaroutines>set_taxis.m

(back to table of contents)
  set_taxis - Make RKS or TPS block by specifying begintime, endtime,
  timeunit and timestep.
  
  CALL:
   S = set_taxis(S, tbegin, teind, tijdstapeenheid, tijdstap)
  
  INPUT:
   S: 
    Existing RKS or TPS administrationbuffer, may be empty.
   tbegin:
    Datenum with begin time.
   teind:
    Datenum with end time.
   tijdstapeenheid:
    (Optional) String with timeunit, see DONAR Manual Part 7, section 2.9.3
   tijdstap:
    (Optional) timestep in tijdstapeenheid units.
  
  OUTPUT:
   S:
    Structure with RKS or TPS (reeksadministratiebuffer) with new values.
  
  APPROACH:
   Convert Matlab datenum to DONAR date and time.
   Substitutue values. Check if timeunit en timestep need to be added.
   Check if timeunit and timestep are valid
  
  EXAMPLE:
   blok(k).RKS=set_taxis(blok(k).RKS,min(taxis_totaal),max(taxis_totaal));
   blok(k).TPS=set_taxis(blok(k).TPS,min(taxis_totaal),max(taxis_totaal));
  
  See also: combineRKS, combineTPS, cmp_taxis

Path:

ModelitUtilRoot\diaroutines

Last modified:

18-Aug-2008 17:38:26

Size:

2005 bytes

Calls functions:

ModelitUtilRoot>diaroutines>datenum2long.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>DATABEHEER>extend_time.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m
ModelitUtilRoot>diaroutines>interp_blok.m

(back to table of contents)

ModelitUtilRoot>diaroutines>splitlongdate.m

(back to table of contents)
  splitlongdate - Split one or more dates of the form YYYYMMDDHHMM into two 
                  numbers date: YYYYMMDD and time: HHMM.
  
  CALL:
   [datum, time] = splitlongdate(longdate)
  
  INPUT:
   longdate:
    Vector of integers of format YYYYMMDDHHMM.
  
  OUTPUT:
   datum: 
    Vector of integers of format YYYYMMDD.
   time:
    Vector of integers of format HHMM.
  
  EXAMPLE:
   [datum, time] = splitlongdate(200808141200)
  
  See also: long2datenum, datenum, datestr, datenum2long

Path:

ModelitUtilRoot\diaroutines

Last modified:

09-Feb-2009 11:25:18

Size:

632 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m

(back to table of contents)

ModelitUtilRoot>diaroutines>writedia_R14.m

(back to table of contents)
  writedia - Write DIA structure to file.
  
  CALL:
   rc = writedia_R14(S, fname)
  
  INPUT:
   S:     
    Dia structure to save, fields:
    Dia Structure, with fields:
      +----IDT
      |    +----sFiltyp (char)
      |    +----sSyscod (char)
      |    +----lCredat (double)
      |    +----sCmtrgl (char)
      +----blok
      +----W3H (struct): see emptyW3H
      +----MUX (struct): empty, see emptyMUX
      +----TYP (struct): empty
      +----RGH (struct): empty, see emptyRGH
      +----RKS (struct): see emptyRKS
      +----TPS (struct): empty, see emptyTPS
      +----WRD (struct): see emptyWRD
   fname:
    String with the name of the file to create.
         
  OUTPUT:
   rc:
    Integer returncode:
     rc == 0 operation successful.
     rc ~= 0 error, rc contains the DIM errorcode.
         
  See also: readdia_R14 verifyDia

Path:

ModelitUtilRoot\diaroutines

Last modified:

02-Aug-2010 17:52:17

Size:

4278 bytes

Calls functions:

ModelitUtilRoot>diaroutines>checkRKS.m
ModelitUtilRoot>diaroutines>writedia_mex.mexw32
ModelitUtilRoot>extensie.m

Is called by functions:

ModelitUtilRoot>diaroutines>matroos2dia.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ModelitUtilRoot>diaroutines>writedia_mex.mexw32

(back to table of contents)

Path:

ModelitUtilRoot\diaroutines

Last modified:

14-Aug-2008 10:06:34

Size:

98304 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>diaroutines>writedia_R14.m

(back to table of contents)

ModelitUtilRoot>docutool>show.m

(back to table of contents)
  show - show image file
  
  CALL
    image: filename (with or without extension)
    
    Modelit
    www.modelit.nl

Path:

ModelitUtilRoot\docutool

Last modified:

30-Apr-2003 18:56:03

Size:

450 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>pathcomplete.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>jacontrol>expandAll.m

(back to table of contents)
  expandAll - expand or collapse entire tree
 
  CALL:
   expandAll(jac, expand)
 
  INPUT:
   jac:     <jacontrol object> van het type JTree, TreeTable of JXTable
   expand:  <boolean>
                        1: completely expand tree
                        0: collapse tree
 
  OUTPUT:
   no direct output, tree is fully collapsed or expanded

Path:

ModelitUtilRoot\jacontrol

Last modified:

22-Mar-2010 10:26:56

Size:

2514 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>jacontrol>findNode.m

(back to table of contents)
  findNode -
 
  CALL:
   treePath = findNode(tree,names)
  
  INPUT:
   tree:    <java object> javax.swing.JTree
   names:   <cellstring> met de namen van de op te zoeken knopen in de boom
 
  OUTPUT:
   treePath
 

Path:

ModelitUtilRoot\jacontrol

Last modified:

24-Oct-2005 20:51:58

Size:

2293 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>getTableValue.m

(back to table of contents)
  getTableValue - this function can be used to retrieve the column and row
                  in the original datamodel for which a edit action took
                  place. this function is typically used in a callback.
 
  CALL:
   [value, row, col, colname, index] = getTableValue(obj, event)
 
  INPUT:
   obj:     <nl.modelit.mdlttable.mdltTable object> the table on which the
             event took place. (argument of the datacallback of a table)
   event:   <nl.modelit.mdlttable.event.TableChangedEvent> description of
            the event giving information about the row and column of the
            table in which the cell was editied (starting from row == 1
            and column == 1) (argument of the datacallback of a table)
 
  OUTPUT:
   value:   the value of the tablecell which was edited.
   row:     <integer> row of changed cell in the original datamodel
                      counting from 1.
   col:     <integer> column of changed cell in the original datamodel
                      counting from 1.
   colname: <string> with columnname

Path:

ModelitUtilRoot\jacontrol

Last modified:

03-May-2010 20:44:42

Size:

1568 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>isopen.m

(back to table of contents)
  isopen - return true if user has double clicked
 CALL
      ok=isopen 
      ok=isopen(HWIN)
      ok=isopen(event)
      
  INPUT    
      HWIN: window handle
      event: event from jxtable
      
  OUTPUT
      ok: TRUE if user has doubleclikked
          
  NOTE
     this function is needed to evbaluate doubleclick status in tabels
     because "selectiontype" property does not return correct values in
     these cases. This function also works if called outside of table.

Path:

ModelitUtilRoot\jacontrol

Last modified:

30-Mar-2009 15:49:18

Size:

1271 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>jacontrol>jatypes.m

(back to table of contents)
  jatypes - list all acceptable values for the "style" property of a
            jacontrol object
  
  CALL:
   flds = jatypes
  
  INPUT:
   no input
 
  OUTPUT:
   flds: <cellstring> acceptable styles for a jacontrol object
  
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol

Last modified:

18-May-2010 15:06:02

Size:

760 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m

(back to table of contents)

ModelitUtilRoot>jacontrol>matlab2javadateformat.m

(back to table of contents)
  matlab2javadateformat - convert string with matlab dateformat to a java
  dateformat, mainly to use with tables
  
  CALL:
   format = matlab2javadateformat(format)
  
  INPUT:
   format: string with matlab dateformat
  
  OUTPUT:
   format: string with java dateformat
  
  APPROACH:
  
  Matlab format:
      yyyy    full year, e.g. 1990, 2000, 2002
      yy      partial year, e.g. 90, 00, 02
      mmmm    full name of the month, according to the calendar locale, e.g.
              "March", "April" in the UK and USA English locales. 
      mmm     first three letters of the month, according to the calendar 
              locale, e.g. "Mar", "Apr" in the UK and USA English locales. 
      mm      numeric month of year, padded with leading zeros, e.g. ../03/..
              or ../12/.. 
      m       capitalized first letter of the month, according to the
              calendar locale; for backwards compatibility. 
      dddd    full name of the weekday, according to the calendar locale, e.g.
              "Monday", "Tuesday", for the UK and USA calendar locales. 
      ddd     first three letters of the weekday, according to the calendar
              locale, e.g. "Mon", "Tue", for the UK and USA calendar locales. 
      dd      numeric day of the month, padded with leading zeros, e.g. 
              05/../.. or 20/../.. 
      d       capitalized first letter of the weekday; for backwards 
              compatibility
      HH      hour of the day, according to the time format. In case the time
              format AM | PM is set, HH does not pad with leading zeros. In 
              case AM | PM is not set, display the hour of the day, padded 
              with leading zeros. e.g 10:20 PM, which is equivalent to 22:20; 
              9:00 AM, which is equivalent to 09:00.
      MM      minutes of the hour, padded with leading zeros, e.g. 10:15, 
              10:05, 10:05 AM.
      SS      second of the minute, padded with leading zeros, e.g. 10:15:30,
              10:05:30, 10:05:30 AM. 
      FFF     milliseconds field, padded with leading zeros, e.g.
              10:15:30.015.
      PM      set the time format as time of morning or time of afternoon. AM 
              or PM is appended to the date string, as appropriate. 
 
  Java format
 
  G  Era designator  Text  AD
  y  Year  Year  1996; 96
  M  Month in year  Month  July; Jul; 07
  w  Week in year  Number  27
  W  Week in month  Number  2
  D  Day in year  Number  189
  d  Day in month  Number  10
  F  Day of week in month  Number  2
  E  Day in week  Text  Tuesday; Tue
  a  Am/pm marker  Text  PM
  H  Hour in day (0-23)  Number  0
  k  Hour in day (1-24)  Number  24
  K  Hour in am/pm (0-11)  Number  0
  h  Hour in am/pm (1-12)  Number  12
  m  Minute in hour  Number  30
  s  Second in minute  Number  55
  S  Millisecond  Number  978
  z  Time zone  General time zone  Pacific Standard Time; PST; GMT-08:00
  Z  Time zone  RFC 822 time zone  -0800
 
  Conversion table:
  y -> y
  m -> M
  M -> m
  d -> d
  H -> H
  S -> s
  F -> S
  PM -> a

Path:

ModelitUtilRoot\jacontrol

Last modified:

01-May-2009 14:05:34

Size:

3412 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>node2treepath.m

(back to table of contents)
  node2treepath - 
 
  CALL:
   treepath = node2treepath(node)
  
  INPUT:
   node:
  
  OUTPUT:
   treepath
  

Path:

ModelitUtilRoot\jacontrol

Last modified:

24-Oct-2005 20:33:30

Size:

553 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>tableWindow.m

(back to table of contents)
  tableWindow - maak scherm met tabel aan en vul deze met tableComposer
 
  CALL:
   table = tableWindow(tableComposer)
 
  INPUT:
   tableComposer: <function handle> dit is een function met uitvoer een
                  struct om de lijst mee te vullen, heeft de volgende vorm:
                  'data' cell array met waarden
                  'header' cellstr met de namen van de kolommen
                  <table struct> af te beelden tabel, zie ook istable
   args: <cell array> met argumenten voor tableComposer
 
  OUTPUT:
   HWIN: handle van aangemaakt figuur
   table: jacontrol van het type jxtable
 
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol

Last modified:

24-Dec-2009 13:11:18

Size:

4857 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>datenum2java.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>istable.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>struct2treemodel.m
ModelitUtilRoot>table>tableheight.m
ModelitUtilRoot>table>tableselect.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>help.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>display.m

(back to table of contents)
  display - display method for the jacontrol object
  
  CALL:
   display(obj)
  
  INPUT:
   obj: object of type jacontrol
  
  OUTPUT:
   no direct output, information about the jacontrol object is plotted on
   the console
  
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

07-May-2008 16:05:28

Size:

392 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>get.m

(back to table of contents)
  get - get methode van het jacontrol object
 
  CALL:
   prop_value = get(obj, prop_name)
 
  INPUT:
   obj:       jacontrol object
   prop_name: string met op te vragen property
 
  OUTPUT:
   prop_value: waarde van de property
  
  See also: jacontrol/set, jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

12-Jun-2010 09:49:38

Size:

60960 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>hashtable2cell.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>offon.m
ModelitUtilRoot>struct2char.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m

(back to table of contents)
  getTableValue - haal de waarde voor een geedit veld op van een sorttable
  
  CALL:
   [value,row,col] = getTableValue(obj,event)
  
  INPUT:
   obj:     <nl.modelit.jacontrol.table.mdltTable object> de sorttable waar het
            event heeft plaatsgevonden
   event:   <nl.modelit.jacontrol.table.event.TableChangedEvent> beschrijving van
            het event met onder andere de rij en kolom waar het event 
            plaatsvond (beginnend van row == 1 en col == 1)
  
  OUTPUT:
   value:   de waarde van het veld dat geedit was
   row:     <integer> rij in het achterliggende datamodel van de tabel,
                      tellend vanaf 1
   col:     <integer> kolom in het achterliggende datamodel van de tabel,
                      tellend vanaf 1

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

30-Jun-2006 12:04:50

Size:

1020 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m

(back to table of contents)
 overload setappdata for jacontrol objects
  INPUT

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

19-Mar-2008 11:39:32

Size:

226 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>help.m

(back to table of contents)
  help - overloaded help for jacontrol objects
 
  CALL:
   str = help(obj, prop_name)
 
  INPUT:
   obj:       jacontrol object
   prop_name: string with object's fieldname for which help is needed
 
  OUTPUT:
   str: string with help
 
  See also: jacontrol, jacontrol/set, jacontrol/private/jafields

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

07-May-2010 17:14:28

Size:

11203 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>tableWindow.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m

(back to table of contents)
  hideColumn - hide a column in a sorttable
  
  CALL:
   hideColumn(sorttable, columnname, hide)
  
  INPUT:
   jac:        <jacontrol> type jxtable
   columnname: <string> with name of colums to hide
   hide:       <boolean> 
  
  OUTPUT:
   no output, the specified column is hidden
  
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

23-May-2007 17:59:20

Size:

879 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>inspect.m

(back to table of contents)
  inspect - show table with the object's property value pairs
  
  CALL:
   inspect(obj)
  
  INPUT:
   obj: jacontrol object
  
  OUTPUT:
   no output, a window with a table with property value pairs is displayed
  
  See also: jacontrol, tableWindow

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

26-Mar-2008 10:09:02

Size:

3649 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>MBDresizedir>mbdarrange.m
ModelitUtilRoot>MBDresizedir>mbdcreateframe.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>MBDresizedir>mbdlinkobj.m
ModelitUtilRoot>MBDresizedir>mbdresize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m

(back to table of contents)
 overload setappdata for jacontrol objects
  INPUT

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

07-Oct-2004 21:49:27

Size:

166 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m

(back to table of contents)
  ishandle - ishandle implementation for jacontrol objects
  
  CALL
      rc=ishandle(obj)
      
  INPUT    
      obj
          jacontrol object
  
  OUTPUT        
      rc
          true is uicontainer that is of jacontrol object still is valid
          handle 

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

20-Aug-2008 22:43:12

Size:

390 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m

(back to table of contents)
  jacontrol - create a jacontrol object and set user defined fixed
              properties
 
  CALL:
   [obj, hcontainer] = jacontrol(hParent,propertyName,propertyValue,...)
   [obj, hcontainer] = jacontrol(propertyName,propertyValue,...)
 
  INPUT:
   hParent: usually: cuurent figure
   varargin: property-value pairs, see jacontrol/set for valid properties
 
  OUTPUT:
   obj:        the jacontrol object
   hcontainer: the returned container from the call to javacomponent
 
  EXAMPLES:
   %jacontrol object work together with mbdarrange
   [spinner,h] = jacontrol('style','jspin',...
                           'tag','minframeh',...
                           'steps',20,...
                           'toolt',toolt);
 
   set(spinner,'callb',{@set_setting2_0,spinner,'','minframeh'});
   setappdata(spinner,'opt',struct('type','int','minimum',200,...
              'maximum',1000,'required',1,...
              'minstr',toolt,...
              'maxstr',toolt));
 
   mbdlinkobj(h,h_inner);
   mbdarrange(h_inner,'VMARGE',1,'HMARGE',5);
 
   %jacontrol works together with mbdparse
 
   %jacontrol works together with gcjh:
   [spinner,h] = jacontrol('style','jspin',...
                           'tag','minframeh',...
                           'steps',20,...
                           'toolt',toolt);
 
   h_jacontrol = gcjh('minframeh')
 
  See also: gcjh, javacomponent

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

18-Jun-2010 16:41:32

Size:

18087 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>assertm.m
ModelitUtilRoot>debugline.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>jatypes.m
ModelitUtilRoot>points2pixels.m
ModelitUtilRoot>varargin2struct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>@helpmenuobj>helpmenu.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)
  set - set methode van het jacontrol object
 
  CALL:
   obj = set(obj, varargin)
 
  INPUT:
   obj:      jacontrol object
   varargin: <option>, <argument> paren
 
  OUTPUT:
   obj: jacontrol object
 
  See also: jacontrol/get, jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

19-Aug-2010 11:09:05

Size:

186987 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>chararray2char.m
ModelitUtilRoot>evalCallback.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>findNode.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>matlab2javadateformat.m
ModelitUtilRoot>jacontrol>node2treepath.m
ModelitUtilRoot>makeCharCell.mexw32
ModelitUtilRoot>offon.m
ModelitUtilRoot>seticon.m
ModelitUtilRoot>struct2treemodel.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m

(back to table of contents)
  setPieceBarColors - set colors for PieceBarRenderer in sorttable
  
  CALL:
   hideColumn(sorttable, columnname, hide)
  
  INPUT:
   jac:    <jacontrol> type jxtable
   key:    <double> key value for corresponding color, size is Nx1
   colors: <boolean> color corresponding to key, size is Nx3
  
  OUTPUT:
   no output, the colors for the PieceBarCellRenderer are set
  
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

28-Aug-2007 14:12:50

Size:

971 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>setValue.m

(back to table of contents)
  setValue - zet waarde in een sorteerbare tabel, deze nieuwe waarde moet
             wel van hetzelfde type zijn als de oude waarde
  
  CALL:
   setValue(jac,arg,row,col)
  
  INPUT:
   jac:     <object> van het type jacontrol met style SortTable
   arg:     de waarde die in de tabel gezet moet worden
   row:     <integer> rij waarin de waarde gezet moet worden 
   col:     <integer> kolom waarin de waarde gezet moet worden
  
  OUTPUT:
   geen directe uitvoer, de waarde is in de tabel gezet in de opgegeven rij 
   en kolom (rij en kolom beginnen bij 1)
 

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

12-Jan-2007 23:29:36

Size:

1115 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m

(back to table of contents)
 overload setappdata for jacontrol objects
  INPUT

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

19-Mar-2008 11:39:34

Size:

229 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m

(back to table of contents)
  tableFormat - converteert jacontrol naar een structure aan met een data
                veld met een cell array en een header veld met de 
                kolomnamen in een cellstring, dit formaat kan gebruikt
                worden om het component te visualiseren in een jxtable
  
  CALL: 
   S = tableFormat(obj)
  
  INPUT:
   obj: jacontrol object
  
  OUTPUT:
   S: structure met velden 'header' - cellstring met kolomnamen
                           'data' - cellarray met data
  

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

20-Jan-2008 11:51:28

Size:

765 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>struct2cellstr.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>test.m

(back to table of contents)
  test - hulpfunctie voor jacontrol testroutines

Path:

ModelitUtilRoot\jacontrol\@jacontrol

Last modified:

11-Apr-2009 12:32:22

Size:

4353 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>fr_divider.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>windowposV7.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m

(back to table of contents)
 Return all feasible propery names for getproperty Call

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

20-Jul-2009 19:28:46

Size:

271 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m
ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m

(back to table of contents)
  helpjacontrol - scan jacontrol/set voor help, resultaten worden
                  weggeschreven in een .mat bestand
  
  CALL:
   S = helpjacontrol
  
  INPUT: 
   action: (optional) string if nargin == 1 the save .mat file is updated
  
  OUTPUT:
   S: struct met property help voor elke jacontrol stijl
  
  See also: jacontrol

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

26-Mar-2008 13:01:12

Size:

3822 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m
ModelitUtilRoot>readstr.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>hgfields.m

(back to table of contents)
 Enumerate fields of handle graphics object that holds jacontrol
 Note: UserData has been omitted from this list and is bypassed through
 objfields
 Note: BackgroundColor is moved to jafields

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

20-Jul-2009 18:57:19

Size:

547 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>im2javaRGB.m

(back to table of contents)
 IM2JAVA Convert image to Java image for RGB values with transparancy
  
    JIMAGE = IM2JAVA(RGB) converts the RGB image RGB to an instance of
    the Java image class, java.awt.Image.
  
    Input-output specs
    ------------------ 
 
    RGB:  3-D, real, full matrix
          size(RGB,3)==3
          double (NaN values will be interpreted as transparant)
          logical ok but ignored
 
    JIMAGE:  java.awt.Image

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

10-Oct-2004 00:54:04

Size:

1182 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>set.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>jacontroltree.m

(back to table of contents)
  inspect - show a window with a treetable with jacontrol types and fields
  
  CALL:
   jacontroltree
  
  INPUT:
   no input
  
  OUTPUT:
   no output, a window with a treetable with jacontrol types and fields
              is displayed
  
  See also: jacontrol, tableWindow

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

21-Apr-2009 13:37:38

Size:

4585 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>mbdlineprops.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>private>helpjacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>jafields.m

(back to table of contents)
  jafields - Enumerate fieldnames for which a translation to java objects
             exists
 
  CALL:
   flds = jafields(style)
 
  INPUT:
   style: string met jacontrol stijl
 
  OUTPUT:
   flds: cellstring met properties van betreffende jacontrol stijl
 
  See also: jacontrol, jacontrol/get, jacontrol/set, jacontrol/help,
  jacontrol/private/jatypes

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

12-Jun-2010 09:49:56

Size:

13080 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m

(back to table of contents)

ModelitUtilRoot>jacontrol>@jacontrol>private>objfields.m

(back to table of contents)
 Enumerate fields for jacontrol object

Path:

ModelitUtilRoot\jacontrol\@jacontrol\private

Last modified:

20-Jul-2009 19:25:06

Size:

382 bytes

Calls functions:

ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>jacontrol>@jacontrol>display.m
ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>getTableValue.m
ModelitUtilRoot>jacontrol>@jacontrol>getappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>help.m
ModelitUtilRoot>jacontrol>@jacontrol>hideColumn.m
ModelitUtilRoot>jacontrol>@jacontrol>inspect.m
ModelitUtilRoot>jacontrol>@jacontrol>isappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>ishandle.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>@jacontrol>set.m
ModelitUtilRoot>jacontrol>@jacontrol>setPieceBarColors.m
ModelitUtilRoot>jacontrol>@jacontrol>setValue.m
ModelitUtilRoot>jacontrol>@jacontrol>setappdata.m
ModelitUtilRoot>jacontrol>@jacontrol>tableFormat.m
ModelitUtilRoot>jacontrol>@jacontrol>test.m
ModelitUtilRoot>jacontrol>getTableValue.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>jacontrol>@jacontrol>private>allfields.m

(back to table of contents)

ModelitUtilRoot>matlabguru>evaldepend.m

(back to table of contents)
  evaldepend - evaluate update structure for combination of object and figure
  
  SUMMARY 
      This function evaluates the update structure for the combination of:
      -  1 or more undoredo objects registered with setdepend
      -  a figure
      Prior to calling this function the dependency tree must be specified
      using the setdepend command.   
  
  CALL:
   upd = evaldepend(HWIN, ind, signature) 
   upd = evaldepend(HWIN, ind) 
    
  INPUT:
   HWIN: figure handle
   ind: subscripts applied to modify object data
   signature: signature of modified undoredo object
  
  OUTPUT:
   upd: <struct> that contains the screen elements that should or
           should not be updated
           upd.property=0 ==> do not update screen element
           upd.property=1 ==> updates screen element
  
  EXAMPLE
      The code below provides a template for usage of dependency trees
      In the present example 2 undoredo objects are used. Typically this is
      needed when the application depends on:
       -1- workspace data
       -2- user preferences
  
      %Include in the main body of the application:
      db=undoredo(initdb,'disp',@dispdata);
      setdepend(HWIN, db, data2applic);
      opt=undoredo(initopt,'disp',@dispsettings);
      setdepend(HWIN, opt, settings2applic);
  
      function s=initdb
          -user definded function-
      function s=initopt
          -user definded function-
      function db=get_db
          -user definded function-
      function opt=get_opt;
          -user definded function-
  
      function dispdata(signature,db,ind)    
      upd = evaldepend(HWIN, ind, signature)
      opt=get_opt;
      view(db,opt,upd);
  
      function dispsettings(signature,opt,ind)    
      upd = evaldepend(HWIN, ind, signature)
      db=get_db;
      view(db,opt,upd);
  
      function view(db,opt,upd)
      -user definded function-
      if upd.element1
          -user definded action-
      end
      if upd.element2
          -user definded action-
      end
  
  See also: setdepend, mdlt_dependencies

Path:

ModelitUtilRoot\matlabguru

Last modified:

28-Jun-2010 16:50:47

Size:

4083 bytes

Calls functions:

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_initupd.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>WavixIV>wavixshowdata.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>matlabguru>getdepend.m

(back to table of contents)
  getdepend - retrieve dependency tree for combination of object and figure
  
  CALL:
   deptree = getdepend(HWIN, obj) 
    or 
   deptree = getdepend(HWIN, signature)
    
  INPUT:
   HWIN: figure handle
   argument 2:
     obj: undoredo object (in this case the overloaded version of getdepend
          will be called)
     or
     signature: signature value (double) 
  
  OUTPUT:
   deptree: dependency tree that has been registered for this combination
            of object and figure, see also setdepend.
  
  NOTE:
   This function exist also as an overloaded function
  
  See also: setdepend, evaldepend
 

Path:

ModelitUtilRoot\matlabguru

Last modified:

28-Aug-2009 08:39:50

Size:

1587 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>retrieve.m

(back to table of contents)
  retrieve - retrieve undoredo object using specified name "dbname"
  
  CALL:
   db = retrieve(HWIN, dbname)
   db = retrieve(HWIN)
   db = retrieve
  
  INPUT:
   HWIN:   handle
   dbname: database name. Typically "db" or "opt"
  
  EXAMPLES:
    db=undoredo(initdb,'dbname',db)
    ....
    db=retrieve('db')
  
  See also: unodoredo

Path:

ModelitUtilRoot\matlabguru

Last modified:

20-Apr-2009 10:52:18

Size:

1030 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>undomenu.m

(back to table of contents)

ModelitUtilRoot>matlabguru>store.m

(back to table of contents)
  store - replacement for undoreo/store.m that will be called if flush
  returns empty set in common ststements line "store(flush(db)).
  
  CALL
    store(obj)
    
  INPUT
    obj : any object
  
  See also:
      undoredo/flush

Path:

ModelitUtilRoot\matlabguru

Last modified:

20-Mar-2008 12:34:48

Size:

282 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>WavixIV>test.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>@filechooser>refresh.m
ModelitUtilRoot>@filechooser>set_directory.m
ModelitUtilRoot>@filechooser>set_filter.m
ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undomenu.m

(back to table of contents)
  undomenu - execute undo, redo of undo-menu
 
 CALL
         undomenu(obj,event,operation,fp_getdata,HWIN)
         undomenu(obj,event,operation,'opt',HWIN)
         NOTE: this is not a method of undoredo function, but a generally
               accesible function
  
  INPUT
          obj,event: standaard Matlab callback arguments
          operation
              operation==1 ==> undo
              operation==2 ==> redo
              operation==3 ==> multiple undo/redo
                          als operation==3 verschijnt popuplijst waarin 
                          gebruiker keuze aangeeft
              operation==4 ==> reset undo/redo history
      fp_getdata: 
          -1- function pointer to user-specified function that returns database structure. 
              This can be a 3 line function like:
                      function ud=getdata
                      global MAINWIN %handle of application's main window
                      ud=get(MAINWIN,'userdata')
          -2- CHAR string conting "opt" or "db"
      HWIN: input argument for fp_getdata (usually figure handle)
 
 USER INPUT
         selectie in undolist scherm
 
 OUTPUT NAAR SCHERM
         geen
 
 APPROACH
      operation==1 ==> undo
       Dit gebeurt met object method UNDO
      operation==2 ==> redo
       Dit gebeurt met object method REDO
      operation==3 ==> multiple undo/redo
       Dit gebeurt met object methods UNDO en REDO

Path:

ModelitUtilRoot\matlabguru

Last modified:

01-Dec-2009 00:34:36

Size:

2700 bytes

Calls functions:

ModelitUtilRoot>matlabguru>retrieve.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@arglist>arglist.m

(back to table of contents)
  arglist - auxiliary function for undoredo/subref that implements cat
            method
  
  SUMMARY
      This method is needed for undoredo object to be able to respond to
      syntax stsr=strvcat(db.arry.fld)
  
  CALL
      obj = arglist(data)
      
  INPUT
      data
          any Matlab variable
          
  OUTPUT
      obj
          arglist object that encapsulates data

Path:

ModelitUtilRoot\matlabguru\@arglist

Last modified:

17-Aug-2008 15:15:26

Size:

488 bytes

Calls functions:

ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>view.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>view.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@arglist>cat.m

(back to table of contents)
  cat - concatinate data stored in arglist object
  
  CALL
      data = cat(dim, obj)
      
  INPUT    
     dim: 1 or 2, dimension for which concatenation is required
     obj: arglist object
     
  OUTPUT    
      data = cat(dim, obj)

Path:

ModelitUtilRoot\matlabguru\@arglist

Last modified:

09-May-2009 14:07:06

Size:

620 bytes

Calls functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>view.m

Is called by functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>view.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@arglist>disp.m

(back to table of contents)

Path:

ModelitUtilRoot\matlabguru\@arglist

Last modified:

12-Jun-2007 14:13:32

Size:

29 bytes

Calls functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>view.m

Is called by functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>view.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@arglist>display.m

(back to table of contents)
  

Path:

ModelitUtilRoot\matlabguru\@arglist

Last modified:

12-Jun-2007 14:22:38

Size:

37 bytes

Calls functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>view.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>view.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@arglist>view.m

(back to table of contents)

Path:

ModelitUtilRoot\matlabguru\@arglist

Last modified:

12-Jun-2007 14:14:10

Size:

28 bytes

Calls functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m
ModelitUtilRoot>matlabguru>@arglist>display.m

Is called by functions:

ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@arglist>cat.m
ModelitUtilRoot>matlabguru>@arglist>disp.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>applymenu.m

(back to table of contents)
  applymenu - execute undo, redo of undo-menu
 
 CALL
         applymenu(obj,operation)
         OR
         undomenu(obj,event,operation,fp_getdata) 
  
  INPUT
          operation
              operation==1 ==> undo
              operation==2 ==> redo
              operation==3 ==> multiple undo/redo
                          als operation==3 verschijnt popuplijst waarin 
                          gebruiker keuze aangeeft
              operation==4 ==> reset undo/redo history
  
 USER INPUT
         selectie in undolist scherm
 
 OUTPUT NAAR SCHERM
         geen
 
 APPROACH
 operation==1 ==> undo
   Dit gebeurt met object method UNDO
 operation==2 ==> redo
   Dit gebeurt met object method REDO
 operation==3 ==> multiple undo/redo
   Dit gebeurt met object methods UNDO en REDO

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

15-Aug-2008 15:46:05

Size:

2995 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>msg_temp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m

(back to table of contents)
 delete all cache- and autosave  files that belong to undoredo object
 
  SUMMARY
      Depending on the properties specied upon object creation, different
      files may be associated with an undoredo object, such as cache files
      and backup files.
      cleanupdisk removes these files and should be called when the
      undoredo object is no longer needed.
  
  CALL 
      cleanupdisk(obj)
      
  INPUT
      obj: undoredo object
    
  OUTPUT
      This function return no output arguments
      
  EXAMPLE
      %Insert some where in main body:
      set(gcf,'deletef',@deleteFcn)
  
      function deleteFcn (obj,event)
          % application delete function
          %retrieve undoredo object:
          db = get_db; %(get_db must be provided)
          %remove all filles associated with undoredo object:
          cleanupdisk(db);
          %Destroy figure:
          delete(obj)

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Apr-2009 11:34:51

Size:

1044 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>closegroup.m

(back to table of contents)
  closegroup - close a group of transactions. 
  
  SUMMARY
      In the undo redo menu, all transactions in a group are presented as
      one line. The closegroup are used to separate different groups of
      transactions. Normally the closegroup command is not needed as the
      undoredo/store command closes a group of transactions before storing
      the undoredo object.
      closegroup is needed in the specific case where you are performing a
      series of operations that should appear seperately in the undo list,
      but there is no reason to the store the database in between.
  
  CALL
      db=closegroup(db)
      
  INPUT
      db: undoredo object
  
  OUTPUT
      db: undoredo object after update
  
  See also: store

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

08-Aug-2008 11:20:06

Size:

1327 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m

(back to table of contents)
  deletequeue - make display queue empty without calling display function
 
  SUMMARY
      The undoredo object keeps track of the items that should be upodated
      by the displayfunction bu storing substruct arguments passed on to
      the subsasgn method in a cell array. 
      When the flush method is called this queue is passed on the display
      function and the queue is made empty. 
      If you are working on an application that uses two undoredo objects
      that can be modified independentlty, for example 1 for data and 1 for
      user preferences, situations might occur where:  
              - both undoredo objects have a nonempty queue
              - calling flush for 1 of the undoredo objects makes calling
              the flush method for the other object no longer needed
      In this case you may invoke deletequeue to tell the other object
      that it can empty its queue. If you omit this, no real harm will be
      done, but the next time flush is called for this object. Some
      object will be repainted, causing un undesired user experience.  
  
  CALL
        db=deletequeue(db)
  
  INPUT/OUTPUT
  		db: undoredo object
  
  EXAMPLE
      to prevent calling display function twice, make queue empty
      Typical use:
        change settings (ur_assign,DRAWNOW,0)
        delete queue
        change data (ur_assign, DRAWNOW,1) <==this one calls display function
        
  SEE ALSO
      flush

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

08-Aug-2008 15:16:02

Size:

1547 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>display.m

(back to table of contents)
  display - overloaded function for disp
  
  SUMMARY
      The undoredo object is designed so that the analogies with a "normal"
      Matlab variable are maximized.  When the function disp is invoked on
      an undoredo object, disp(db.data) will be called.  A line "undoredo
      object" is displayed to notify the user of the calls of the object.
  
  CALL
      disp(db)
  
  INPUT
      db: undoredo object
  
  OUTPUT
      this function returns no output arguments

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

08-Aug-2008 15:16:08

Size:

560 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m

(back to table of contents)
  fieldnames - determine the fields of the undoredo-object that can be
               changed by the user 
  
  CALL:
   fields = fieldnames(obj)
  
  INPUT:
   obj: <undoredo-object>
  
  OUTPUT:
   fields: <cellstring> with the fields of the undoredo object
  
  APPROACH:
   this function is also important for autocomplete in the command window
  
  SEE ALSO: undoredo, fieldnames

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

19-Sep-2006 21:29:50

Size:

468 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>flush.m

(back to table of contents)
 Perform all paint actions that are requered for the transactions since
 last flush
 
  CALL
      obj=flush(obj)
      obj=flush(obj,'all')
      obj=flush(obj,extra)
 
  INPUT
      obj: undoredo object
      extra: extra item to be passed on in cell-array 'queued'
             typical use:
                 obj=flush(obj,'all'): update all elements
             Note that the displayfunction that is used should be able to deal with
             this extra argument
 
  OUTPUT
      obj: updated version of obj (the paint queue will be empty)
 
  EXAMPLE
      % paint all screen elements with changes in underlying data:
      flush(obj) 
  
      % paint all screen elements:
      flush(obj,'all')
  
  	 %mimic change of specific field without actually changing data:
  	 flush(guiopt,substruct('.','showodpair'));
  
  TIPS AND TRICKS
      The next code fragment shows how complex argument checking can be
      implemented. If a user enters a number of arguments that are
      mutually inconsistent. The user should be warned and the previous GUI
      state must be restored.
  
      function someCallback    
      db=get_db;
      db=processUserInput;
      db=flush(db)
      if isempty(db)
          %repaint interface based on previous data
          warndlg(<somewarning>);
          db=get_db;
          db=flush(db,'all'); %you might want to refine here
      end
      store(db)
 
  See also
      store
      deletequeue  
      isemptyqueue  

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

28-May-2010 13:41:14

Size:

3267 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>getdata.m

(back to table of contents)
  getdata - Retreive data content from undoredo object
  
  SUMMARY
      In most cases data is retrieved from an object by subscripting, for
      example:
          obj=undoredo(1:8)
          a=obj(3) 
          ==> a=3
      However there is no subscript that retrieves the complete
      datastructure. For this purpose the use the data() operator:
          obj=undoredo(data1)
          data2=data(obj)
      ==> data2 is an exact copy of data1
  
  CALL
      data=getdata(obj)
  
  INPUT
      obj: undoredo object 
  
  OUTPUT
      data: data content of undoredo object
 
  EXAMPLE
      If OBJ is an undoredo object, the following example shows how the
      clear the undoredo history of an object: 
          OBJ=undoredo(data(OBJ));
  NOTE
      There is a subtle difference between data=getdata(db) and data=db(:). 
      The (:) operator always returns a Mx1 vector with M=numel(db). If db
      contains a data with size m x n, getdata is needed to retrieve data
      content and data size.
  
  SEE ALSO
       undoredo/size

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Apr-2009 11:34:51

Size:

1124 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>getdepend.m

(back to table of contents)
  getdepend - retrieve dependency tree for combination of object and figure
              (overloaded method)
  
  CALL
      setdepend(HWIN,obj) 
    
  INPUT
    HWIN: figure handle
    obj: undoredo object 
  
  OUTPUT
    deptree: dependency tree that has been registerd for this combination
             of object and figure, see also setdepend
  
  EXAMPLE
      The code below provides a template for usage of dependency trees
  
      %Include in the main body of the application:
      db=undoredo(initdb,'disp',@dispdata);
      setdepend(HWIN, db, data2applic);
  
      function s=initdb
          -user definded function-
      function db=get_db
          -user definded function-
  
      function dispdata(signature,db,ind)    
      upd = getdepend(HWIN, db)
      if upd.element1
          -user definded action-
      end
      if upd.element2
          -user definded action-
      end

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Apr-2009 11:34:52

Size:

1170 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>getprop.m

(back to table of contents)
 getprop: return property of undoredo object
 
  SUMMARY:
      This methods implements a "get" method for fields of an undoredo that
      normally are not visible. The function is intentinally not
      documented.
      
  CALL
      prop_value=get(obj,prop_name)
 
  INPUT
      obj: undoredo object
      prop_name: property to retrieve (incomplete string accepted)
 
  OUTPUT
      prop_value: property
 
  See also: setprop
 
  EXAMPLE
      Q=getprop(db,'que')
      db.prop=value
      db=setprop(db,'que',Q); %prevent update
      store(db);
  
  NOTE
     this function has name getprop, so Matlab set need not be overloaded
     (this saves approx 0.001 sec per call)

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Apr-2009 11:34:52

Size:

1024 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>getsignature.m

(back to table of contents)
  getsignature - retrieve data content from undoredo object
  
  CALL:
   signature = getsignature(obj)
  
  INPUT:
   obj: <undoredo object> 
  
  OUTPUT:
   signature: <double> with object's signature
  

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

13-Dec-2005 23:51:28

Size:

285 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>getsttname.m

(back to table of contents)
 retrieve name of settings file
  
  CALL
      str = getsttname(obj)
  
  INPUT
      obj: undoredo object
      
  See also : sttsave

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

05-May-2009 11:22:24

Size:

348 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m

(back to table of contents)
  iscommitted - return status of object
 
  SUMMARY
      When an undoredo object is created or its contents ar reassigned
      using setdata, the status "comitted" is set to TRUE. Each command
      that changes the data content also sets the status "comitted" to
      false. The status "comitted" is used in the application program to
      decide if the user should be ask to save data when the application is
      closed. This is typically implemented in the closerequest function.
      When the user saves intermediate results the application should
      include a statement that sets the comitted status to TRUE.
  
  CALL
      committed=iscommitted(obj)
  
  INPUT
      obj: undoredo object
      
  OUTPUT
      comitted: Comitted status (TRUE or FALSE)
                Comitted status is TRUE ==> all transactions have been
                                            comitted (saved to disk of
                                            stored otherwise)
                Comitted status is FALSE ==> one or more transaactions
                                             have not been comitted
  
  EXAMPLE 
      (code example save data)
          ud = getdata(db);
          save(fname,'ud'); %WIJZ ZIJPP OKT 2006
          db=setcommitted(db);
          store(db);
          
      (code example close request function)
          function closereq(hFig,event)
          db = get_db;
          if isempty(db)||iscomitted(db)
              delete(hFig);
              return
          end
          
          %Ask and store unsaved data
          switch questdlg('Save data?,'Close application','Yes','No','Cancel','Yes')
              case 'Yes'
                  savedata(db);
                  delete(hFig);
              case 'No'
                  delete(hFig);
                  return
              case 'Cancel'
                  return;
          end
  
  See also
    undoredo/setcommitted
    undoredo/subsasgn
    undoredo/mbdvalue
    undoredo/isopen

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 15:21:03

Size:

2145 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>isempty.m

(back to table of contents)
 Overloaded method for isempty within class undoredo
 
  CALL/INPUT/OUPUT
      type "help isempty" for help on this topic

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 16:03:36

Size:

182 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m

(back to table of contents)
 Return true is visualization queue of object is empty
 
  CALL
      rc=isemptyqueue(obj)
 
  INPUT
      obj: undoredo object
 
  OUTPUT
      rc: true if nothing left to paint
 
  EXAMPLE
      % callback of OK button: callback of edits have changed database, but
      % changes are not yet fully shown because db has not been flushed
 
      if isemptyqueue(obj)
          return
      end
      store(flush(obj))
 
  See also
      store
      flush
      deletequeue  

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

11-Apr-2008 00:11:29

Size:

556 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>isfield.m

(back to table of contents)
 Overloaded method for isfield within class undoredo
 
  CALL/INPUT/OUPUT
      type "help isfield" for help on this topic

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 16:03:57

Size:

203 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>isopen.m

(back to table of contents)
 return - group status of undoredo object
  
  CALL
      isopen=isopen(obj)
      
  INPUT
      obj: undoredo object
      
  OUTPUT
      isopen: status of group
              isopen = 1 ==> the group is open. a next ur_assign statement
                             would add to this group
                             (newgroup=0)
              isopen = 0 ==> the group is closed. a next ur_assign
                             statement initializes a new group
                             (newgroup=1)
  SEE ALSO:
      ur_assign
      mbdflush
      ur_label
 
  REMARK
     mbdsubsasgn needs a newgroup argument. When mixing ur_assign and
     mbdsubsasgn statements use newgroup=~isopen(db) or equivalent:
     newgroup=db.nextisnew

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

28-Jan-2005 13:50:37

Size:

1013 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>label.m

(back to table of contents)
 THIS FUNCTION IS OBSOLETE. USE SETLABEL

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

09-Aug-2008 14:23:57

Size:

1386 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m

(back to table of contents)
  logbookentry- update transaction log (add entry)
  
  CALL:
   db = logbookentry(db,content,type,undolabel,comment)
      
  INPUT:
    db       : undoredo object (to be updated)
    content  : value for content property (CELL or CHAR array)
    type     : value for type property (default: empty)
    undolabel: label for undo menu (default: empty) Include this if
               transact-set defines the only element of an update group
    comment  : value for comment property (default: empty)
    
  OUTPUT  
    obj       : undoredo object (update complete)
                The field "transaction" is inititialized or appended with
                the following data structure:
                  transaction  
                  +----date (double)       
                  +----content (char array)
                  +----type (char array)   
                  +----comment (char) 
             
    
  SEE ALSO   : logbookgui (currentlty transact_gui)
  
  EXAMPLE
    data.value=1:10
    db=undoredo(data);
    data.value(5)=50;
    db=logbookentry(db,'element 5 has been updated','updated');
    disp(getdata(db))

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

09-Aug-2008 11:39:04

Size:

2230 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>redo.m

(back to table of contents)
  mbdredo - redo modifications to undoredo object
  
  CALL
    obj=redo(obj,N)
    
  INPUT
    obj : undoredo object
    N   : number of redo steps (default: N=1)
    
  OUTPUT
    obj : updated undoredo object
  
  See also: undo

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

15-Aug-2008 15:46:05

Size:

624 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>msg_temp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m

(back to table of contents)
  setcommitted - set 'committed' status of object to 
 
  SUMMARY
      When an undoredo object is initialized its committed status is
      initialized als TRUE.
      Each time the undoredo object is modified, its committed status is
      set to FALSE. If an application contains a function that saves the
      data to disk, a call to setcomitted can be used to indicate that data
      have been saved. If the application is closed a call to setcommitted can
      reveal if modifications have been made since last save.
  
  CALL
      obj=setcommitted(obj)
      obj=setcommitted(obj,comitted)
  
  INPUT
      obj: undoredo object
      comitted: Comitted status (TRUE or FALSE)
                Comitted status is TRUE ==> all transactions have been
                                            comitted (saved to disk of
                                            stored otherwise)
                Comitted status is FALSE ==> one or more transaactions
                                             have not been comitted
      
  OUTPUT
      obj: updated version of undoredo object
 
  
  EXAMPLE 
      (code example save data)
          ud = getdata(db);
          save(fname,'ud'); %WIJZ ZIJPP OKT 2006
          db=setcommitted(db);
          store(db);
          
      (code example close request function)
          function closereq(hFig,event)
          db = get_db;
          if isempty(db)||iscomitted(db)
              delete(hFig);
              return
          end
          
          %Ask and store unsaved data
          switch questdlg('Save data?,'Close application','Yes','No','Cancel','Yes')
              case 'Yes'
                  savedata(db);
                  delete(hFig);
              case 'No'
                  delete(hFig);
                  return
              case 'Cancel'
                  return;
          end
  
  See also
    undoredo/iscommitted
    undoredo/subsasgn
    undoredo/mbdvalue
    undoredo/isopen

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

08-Aug-2008 22:06:13

Size:

2178 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>setdata.m

(back to table of contents)
  setdata - overload method for "=" operator
  
  SUMMARY
      The subsasgn method provides no way to replace the datacontent of an
      undoredo object with a new matlab variable. This method does the job.
      The extra argument may be used to indicate whether or not the undo
      history whould be cleared or not
      
 CALL
   obj=setdata(obj,data)
   obj=setdata(obj,data,reset)
 
 INPUT
   obj:    undoredo object
   data:   new data for object
   reset: (optional, defaults to true)
          if true reset the undo history of the object
 
  See also: getdata subsasgn

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

02-Dec-2008 19:50:22

Size:

3851 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>varsize.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>setdepend.m

(back to table of contents)
  setdepend - register dependency tree for object with window
  
  SUMMARY
      A dependency tree is used by evaldepend to derive the so-called
      update structure using the substruct arguments used in vatious
      assignments to an undoredo object.
      A dependency tree is specified in a user defined function that
      returns a structure that resembles the datamodel of an application.
      At each node of this structue a field "updobj" may be added. This
      field should contain a cell array with the name or names of the
      update actions that are required when an assignment is made that
      effects this node or any of its children.
      See the example for an illustration.
  
  CALL
    setdepend(db,HWIN,deptree)
    
  INPUT
    HWIN   : figure handle
    db     : undoredo object
    deptree: dependency tree
  
  OUTPUT
      This function returns no output arguments, but registers the
      dependency tree in the application data "ur_depend" of the figure
  
  EXAMPLE    
      function example
      %initialize
      data.a=1;
      data.b.c=2;
      HWIN=figure; %create application figure
      db=undoredo(data,'disp',@view,'storeh',HWIN,'storef','userdata'); %define database
      
      deptree.a.updobj={'update_a'};
      deptree.b.updobj={'update_b'};
      deptree.b.c.updobj={'update_c'};
      deptree.b.d.updobj={'update_d'};
      setdepend(HWIN,db,deptree); %register dependency tree
      %end of initialize
      
      %do some assignments and view what happens, make sure the function
      %"view" (see below) is available
      db.b.c=1;
      db=flush(db);
      %     ==>upd = 
      %     update_a: 0
      %     update_b: 1
      %     update_c: 1
      %     update_d: 0
      db.b=1;
      db=flush(db);
      %     ==>upd = 
      %     update_a: 0
      %     update_b: 1
      %     update_c: 1
      %     update_d: 1
      db.a=1;
      db=flush(db);
      %     ==>upd = 
      %     update_a: 1
      %     update_b: 0
      %     update_c: 0
      %     update_d: 0
      
      function view(signature,S,ind)
      upd=evaldepend(gcf,ind,signature)
  
  See also: getdepend, evaldepend
 Create the structure that should be stored

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Apr-2009 11:34:53

Size:

3352 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_mastertree.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>setlabel.m

(back to table of contents)
  setlabel - set label for undo menu for current group
 
  SUMMARY
      In the undo/redo menu, all transactions in a group are presented as
      one line. The closegroup commans is used to separate different groups
      of transactions. Normally the closegroup command is not needed as the
      store method closes a group of transactions before storing the
      undoredo object.     
      closegroup is needed in the specific case where you are performing a
      series of operations that should appear seperately in the undo list,
      but there is no reason to the store the database in between.   
  
  CALL:
   obj = setlabel(obj, menustring)
 
  INPUT:
   obj:        <undoredo object>
   menustring: <string> for undo/redo menu
                        (default value: menustring='Modify object')
 
 NOTE: a new goup must be initialized with a call to ur_assign. Example:
       Wrong:
          db=setlabel(db,'My group')
          db=ur_assign(...); (Result: this group has label "My group")
       Right:
          db=ur_assign(...);
          db=setlabel(db,'My group') (Result: this group has no label)
  
  See also: ur_closegroup, ur_assign
 
  EXAMPLE:
          db=ur_assign(db,substruct('.','raai','()',{refindx}),...
              []);
          db=ur_assign(...);
          db=setlabel(db,'str')
          db=ur_closegroup(db);

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 15:20:21

Size:

1801 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>setprop.m

(back to table of contents)
  setprop - implement set method for undoredo object
  
  SUMMARY:
      This methods implements a "set" method for fields of an undoredo that
      normally are not visible. The function is intentinally not
      documented.
  
  INPUT
      <option>,<argument>
  
  OUTPUT
      none

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 15:22:01

Size:

1281 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>getproperty.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>show.m

(back to table of contents)
  show - directlty caal the display function of an undoredo object.
  
  SUMMARY 
    Usage of this function allows one to paint (part of) the interface
    without changing the data.
    Note: usage of this function is not recommended programming practice.
    In almost any case the objective cabn be reached by using the
    flush method.
  
 CALL
   show(db,ind)
  
 INPUT
   db: undoredo object
   ind: struct array with fields (defaultvalue='all')
          type: '()'/'[]'/{}','.'
          subs: cell array
 
  
  EXAMPLE
      typical use: visualise parts of the GUI that does not depend on the database 
                   but instead on the value of for example a uicontrol 
  
  FAQ SECTION 
  	Problem: 
        show(db,'all') does not give the expected result (nothing happens)
  	Cause: 
        the 'all' argument (string) is passed on as {'all'} (cell array)
  	Remedy: 
        use show(db). This will call the display function with 'all' as an argument

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

10-Aug-2008 19:07:05

Size:

1404 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>store.m

(back to table of contents)
  store - store object with specified handle and field
  
  SUMMARY
      When an undoredo object is created the properties "storehandle" and
      "storefield" may be specified. This allows an undoredo object to
      store itself.
      The store operator is similar to the commit action known in
      databases. 
      Before an undoredo object is stored the group of transactions is
      closed, so that the next change will initialize a new group.
      
  CALL
    store(obj)
    
  INPUT
    obj : undoredo object
  
  OUTPUT
      this function returns no output arguments, but updates userdata or
      applicationdata of specified handle
  
  See also: closegroup

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 15:19:40

Size:

1177 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m

(back to table of contents)
  subsasgn - equivalent to Matlab subsasgn but fo undo objects
  
 CALL
   obj=subsassgn(obj,ind,data)
 
 INPUT
   obj: current object
      obj: undoredo object
           obj.history: all data that is needed to perform
                             undo and redo actions on object
           obj.data:         data contents of object
 
   ind: substruct array with fields (see substruct)
          type: '()'/'[]'/{}','.'
          subs: cell array
 
   data: the contents of this field depend on the mode of operation:
 
  SEE ALSO
      getdata
      label
      flush
      store

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

20-Jan-2007 19:40:41

Size:

3980 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>varsize.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>subsref.m

(back to table of contents)
  subsref - overloaded subsref function for undoredo object
  
  CALL
      [data,varargout]=subsref(obj,ind)
   
  INPUT
      obj: undoredo object
      ind: suvsref expression
 
  OUTPUT
      result from subseref statement on object
  
 NOTES
      KNOWN RESTRICTIONS
      In most cases undoredo objects can be applied using the same synatax
      as normal matlab variables. A few exceptions exist:
  
      STRVCAT
      %Observe the following behavior:
              U.a=struct('b',{'first','second','third'}) % U.a is a 3 element struct array
              str1=strvcat(U.a.b) %str1 is a 3x6 char array
              UU=undoredo(U)
              str2=strvcat(UU.a.b)%str2 = 'first'
      %Work-around:
              aa=UU.a %returns "normal" struct array
              st3=strvcat(aa.b)%str2 = 'first' %str3 is a 3x6 char array
      %Background: If S is a Nx1 struct array, S.b returns N outputs.
                   Undoredo objects only return 1 output.

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

08-May-2009 08:41:38

Size:

5878 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m

(back to table of contents)
  subsref - overloaded subsref function for undoredo object

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

25-Jul-2007 14:00:01

Size:

4438 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@arglist>arglist.m
ModelitUtilRoot>matlabguru>@arglist>display.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>undo.m

(back to table of contents)
  undo - undo modifications to undoredo object 
  
  CALL
    obj=undo(obj,N)
    
  INPUT
    obj : undoredo object
    N   : number of undo steps (default: N=1)
    
  OUTPUT
    obj : updated undoredo object
 
 See also: redo

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

15-Aug-2008 15:46:06

Size:

520 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>msg_temp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m

(back to table of contents)
  undoredo - constructor for undoredo object
  
  CALL:
      undoredo(data,<property1>,<value1>,<property2>,<value2>,...)
  
  INPUT
      data: initial data content of undoredo object
  
      PROPERTIES:(BY CATEGORY, ALL PROPERTIES ARE OPTIONAL)
      
      Display properties        
      -  displayfunction: function to call when content of undoredo object changes
                Possible values : string with name of function or function-pointer
                Default value   : '' (no display function will be called)
                Remark          : this function is called in the following way:
                                      feval(signature,update,data,queued);
                                  with:
                                      update: function (string or pointer)
                                      data  : full data structure
                                      queued: cell array containing information on modified fields
      -  signature: approximate time of object creation. Used as a reference
                    to the undoredo object (without requiring to pass on
                    the full object and its data). Signatureis passed on to
                    the objects displayfunction). Specify this property if
                    the content of the workspace is replaced, but no new
                    call is applied. 
      - dbname: typically "opt" or "db", but any string that qualifies as a
          structure-fieldnmae is allowed. This field may be used in calls
          using "retrieve". Examples:
              db =retrieve(HWIN,'db')
              opt=retrieve(HWIN,'opt')
      Autobackup properties
      -   backupfile: name of autobackup file (empty string: do not make backups)
                Possible values : char str (Current path will be added to
                                  filename)
                Default value   : '' (no automatic backups)
                See also        : ur_cleanupdisk
      -   timeoflastbackup: moment of last backup
                Possible values : Matlab datenum
                Default value   : now()
      -   backupinterval: time between timed backups (1/1440= 1 minute)
                Possible values : Any numeric value>0
                Default value   : 10/1440 (10 minutes between backups)
                
      Undo/Redo properties        
      -   mode: undo mode
                Possible values : 'simple', 'memory', 'cached'
                                  Simple: No undo. Use this option is no
                                          undo is required.
                                  memory: undo info stored in memory. Use
                                          this option if no massive datasets are
                                          needed
                                  cached: undo info cached to disk if
                                          needed. Use this option if
                                          workspace contains many MB                                         
                Default value   : 'memory'
      Undo/Redo properties (continued)): Autocache properties        
      -   cachefile: (applies only if mode=='cached')
                Possible values : char str
                Default value   : 'urcache'
                See also        : ur_cleanupdisk
                Remark          : the name of the cache files will be derived from this parameter
      -   maxbytes : maximum number of bytes stored in memory before saving to disk
                Possible values : integers>0
                Default value   : 64 Mb
                
      Autostore properties
      -   storehandle: handle of GUI object with which undoredo object is saved
                Possible values : a valid handle of a GUI object (for example a figure handle)
                Default value   : []
                See also        : mbdstore
      -   storefield: name of application data field to store undo redo object in
                Possible values : char array
                Default value   : ''
                See also        : mbdstore
                Remark          : setting storefield=='userdata' causes undoredo data to be saved as:
                                      set(storehandle,'userdata',obj)
                                  setting storefield~='userdata' causes undoredo data to be saved as:
                                      setappdata(storehandle,storefield,obj)
                                      
      Other properties
      -   comitted: commited to disk. This value is set to 0 if contents of undoredo changes
                Possible values : 0,1
                Default value   : 1
                See also        : iscommited, setcomitted
                Remark          : if this parameter equals zero, there may be unsaved data
 
         
  OUTPUT
      obj: undoredo object
           obj.history: all data that is needed to perform 
                             undo and redo actions on object
           obj.data:         data contentst of object
 
  EXAMPLE
          u=undoredo(struct('field1',1','field2',2),...
              'backupfile',C.autosave,...
              'backupinterval',C.backupint',...
              'displayfunction',@guishow,...
              'storehandle',gcf,...
              'storefield','undodata');
          store(u); %store data

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

05-May-2009 11:19:29

Size:

5663 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>print2file.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>selectdate.m
ModelitUtilRoot>selectdir.m
ModelitUtilRoot>@filechooser>filechooser.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ModelitUtilRoot>get_constants.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m

(back to table of contents)
  ur_assign - equal to subsasgn
  
  SUMMARY
      Before undoredo class was defined, undo functionality was implemented
      by the mbdundo function. The method ur_assign works on the objects
      created in this way, and still may exist in some code.   
  
  NOTE 
      Any call to ur_assign should be replaced by equivalent call to subsasgn
      
  CALL/INPUT/OUTPUT
      see undoredo/subsasgn

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

17-Aug-2008 16:10:05

Size:

549 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m

(back to table of contents)
  NOTE: this function will be phased out and will be replaced by evaldepend
 this function is intentionally left undocumented

Path:

ModelitUtilRoot\matlabguru\@undoredo

Last modified:

09-Aug-2008 15:22:38

Size:

2253 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_initupd.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_look4change.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m

(back to table of contents)
 THIS METHOD IS FOR INTERNAL USE IN UNDOREDO TOOLBOX
  
  add2cache - check if item needs to be added to cache file
 
  CALL
      obj=add2cache(obj)
  
  INPUT
      obj: undoredo object
      obj.history.cur_transact equals the last completed transaction
  
  OUTPUT
      obj: undoredo object, cache file modified

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 16:10:27

Size:

1463 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>autosave.m

(back to table of contents)
  autosave - timed backup of data
  
  CALL
      autosave(fname,data)
      
  INPUT
      fname
          name of cache file
      data
          data that will be saved
          
  OUTPUT
      none
  
  NOTE: this function is called from undoredo/subsasgn and undoredo/setdata

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:10:49

Size:

631 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m

(back to table of contents)
  cachecleanup - The first time an undoredo object is changed after on or
  more undo's all cache files that refer to later transactions are deleted
  
  CALL
      obj=cachecleanup(obj)
  
  INPUT
      obj: undoredo object
      obj.history.cur_transact equals the last completed transaction
  
  OUTPUT
      obj: undoredo object, cache file modified

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

27-May-2006 14:15:07

Size:

2352 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m

(back to table of contents)
  cachename - return name for cache file
  
  CALL
      str=cachename(obj,N,type)
      
  INPUT
      obj
          undoredor object
      N
          integer
      type
          string
      
  OUTPUT
      str

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:12:32

Size:

339 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m

(back to table of contents)
  currentcache - determine current cache file (if existent)
  
  CALL
      [f,indexf]=currentcache(obj,targetstep)
      
  INPUT
      obj: undoredo object
      targetstep: step to complete
      
  OUTPUT
      f
      indexf

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:15:06

Size:

1070 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m

(back to table of contents)
  deletecachefile - delete file for undoredo object
  
  CALL
      deletecachefile(fname)
      
  INPUT
      fname: filename to delete
      
  OUTPUT
      none

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:17:35

Size:

668 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m

(back to table of contents)
 THIS METHOD IS FOR INTERNAL USE IN UNDOREDO TOOLBOX
 
 emptyhistory - create an empty history array for an undo object
  
  CALL
      history=emptyhistory(data,mode)
      
  INPUT
      obj: undoredo object: the following fields are used
  		obj.data
  		obj.mode
      data: initial data for object
      mode: mode of operation (simple,memory,cached)
      
  OUTPUT
      history: history structure 
  
  CALLED FROM
      mbdundomenu, mbdundoobj

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

27-May-2006 15:53:28

Size:

1643 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>emptytransact.m

(back to table of contents)
  emptytransact - initialize transaction record with empty data
  
  CALL
      S=emptytransact
      
  INPUT
      none
      
  OUTPUT
      transaction record with empty data

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:19:22

Size:

514 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m

(back to table of contents)
  mbdundoobj - ininitialize undoredo object
  
  FUTURE NAME: this function will be superseeded by undoredo
 
  
  CALL:
      mbdundoobj(data,<property1>,<value1>,<property2>,<value2>,...)
  
  INPUT
      data: initial data content of undoredo object
  
      PROPERTIES:(BY CATEGORY, ALL PROPERTIES ARE OPTIONAL)
      
      Display properties        
      -  displayfunction: function to call when content of undoredo object changes
                Possible values : string with name of function or function-pointer
                Default value   : '' (no display function will becalled)
                Remark          : this function is called in the following way:
                                      feval(signature,update,data,queued);
                                  with:
                                      update: function (string or pointer)
                                      data  : full data structure
                                      queued: cell array containing information on modified fields
      -  signature: approximate time of object creation. Used as a reference
                    to the undoredo object (without requiring to pass on
                    the full object and its data). Signatureis passed on to
                    the objects displayfunction). Specify this property if
                    the content of the workspace is replaced, but no new
                    call is applied. 
      - dbname: typically "opt" or "db", but any string that qualifies as a
          structure-fieldnmae is allowed. This field may be used in calls
          using "retrieve". Examples:
              db =retrieve(HWIN,'db')
              opt=retrieve(HWIN,'opt')   
      Autobackup properties
      -   backupfile: name of autobackup file (empty string: do not make backups)
                Possible values : char str (Current path will be added to
                                  filename)
                Default value   : '' (no automatic backups)
                See also        : ur_cleanupdisk
      -   timeoflastbackup: moment of last backup
                Possible values : Matlab datenum
                Default value   : now()
      -   backupinterval: time between timed backups (1/1440= 1 minute)
                Possible values : Any numeric value>0
                Default value   : 10/1440 (10 minutes between backups)
                
      Undo/Redo properties        
      -   mode: undo mode
                Possible values : 'simple', 'memory', 'cached'
                                  Simple: No undo. Use this option is no
                                          undo is required.
                                  memory: undo info stored in memory. Use
                                          this option if no massive datasets are
                                          needed
                                  cached: undo info cached to disk if
                                          needed. Use this option if
                                          workspace contains many MB                                         
                Default value   : 'memory'
      Undo/Redo properties (continued)): Autocache properties        
      -   cachefile: (applies only if mode=='cached')
                Possible values : char str
                Default value   : 'urcache'
                See also        : ur_cleanupdisk
                Remark          : the name of the cache files will be derived from this parameter
      -   maxbytes : maximum number of bytes stored in memory before saving to disk
                Possible values : integers>0
                Default value   : 64 Mb
                
      Autostore properties
      -   storehandle: handle of GUI object with which undoredo object is saved
                Possible values : a valid handle of a GUI object (for example a figure handle)
                Default value   : []
                See also        : mbdstore
      -   storefield: name of application data field to store undo redo object in
                Possible values : char array
                Default value   : ''
                See also        : mbdstore
                Remark          : setting storefield=='userdata' causes undoredo data to be saved as:
                                      set(storehandle,'userdata',obj)
                                  setting storefield~='userdata' causes undoredo data to be saved as:
                                      setappdata(storehandle,storefield,obj)
                                      
      Other properties
      -   comitted: commited to disk. This value is set to 0 if contents of undoredo changes
                Possible values : 0,1
                Default value   : 1
                See also        : iscommited, setcomitted
                Remark          : if this parameter equals zero, there may be unsaved data
 
         
  OUTPUT
      obj: undoredo object
           obj.history: all data that is needed to perform 
                             undo and redo actions on object
           obj.data:         data contentst of object
 
  EXAMPLE
          u=mbdundoobj(struct('field1',1','field2',2),...
              'backupfile',C.autosave,...
              'backupinterval',C.backupint',...
              'displayfunction',@guishow,...
              'storehandle',gcf,...
              'storefield','undodata');
          mbdstore(u); %store data
  
  KNOWN RESTRICTIONS
      In most cases undoredo objects can be applied using the same synatax
      as normal matlab variables. A few exceptions exist:
  
      STRVCAT
      %Observe the following behavior:
              U.a=struct('b',{'first','second','third'}) % U.a is a 3 element struct array
              str1=strvcat(U.a.b) %str1 is a 3x6 char array
              UU=undoredo(U)
              str2=strvcat(UU.a.b)%str2 = 'first'
      %Work-around:
              aa=UU.a %returns "normal" struct array
              st3=strvcat(aa.b)%str2 = 'first' %str3 is a 3x6 char array
      %Background: If S is a Nx1 struct array, S.b returns N outputs.
                   Undoredo objects only return 1 output.

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

01-Dec-2009 00:03:00

Size:

11753 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>varargin2struct.m
ModelitUtilRoot>varsize.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>undoredo.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m

(back to table of contents)
  mbdvalue - evaluate value of undo object for specific transaction number
  
  CALL
      obj=mbdvalue(obj,targetstep)
      
  INPUT
      obj:     undo object
      obj.history.cur_transact: currently completed step
      targetstep: number of modifications to include
  
  OUTPUT
      obj: undoredo object after applying required undo/redo operations

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:24:04

Size:

8796 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m

(back to table of contents)
 This function is now obsolete

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

20-Apr-2009 11:34:53

Size:

5406 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>undostatus.m

(back to table of contents)
 THIS METHOD IS FOR INTERNAL USE IN UNDOREDO TOOLBOX
  
  CALL
      status=undostatus(obj)
      
  INPUT
      obj: undo structure
  
  OUTPUT
      status: structure with undo information
      status.selected: currently selected item
      status.list: char array with menu choices

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:25:27

Size:

1448 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>applymenu.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m

(back to table of contents)
  undovalue - evaluate value of undo object for specific transaction number
  
  CALL
      obj=mbdvalue(obj,targetstep)
      
  INPUT
      obj:     undo object
      obj.history.cur_transact: currently completed step
      targetstep: number of modifications to include
  
  OUTPUT
      obj: undoredo object after applying required undo/redo operations
  
  NOTE
      undovalue and mbdvalue seem identical, mbdvalue needs to be removed
      eventually

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:27:55

Size:

8890 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>private>currentcache.m
ModelitUtilRoot>matlabguru>@undoredo>private>subsasgn_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>applymenu.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m

(back to table of contents)
 ur_cleanupdisk - delete all cache- and autosave  files that belong to object
  
  CALL
      ur_cleanupdisk(obj)
      
  INPUT
      obj
          undoredo object. Cache files and backup files will be deleted
          
  OUTPUT
     none

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

20-Mar-2009 15:56:59

Size:

635 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdundoobj.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>ur_deletecache.m

(back to table of contents)
  ur_deletecache - delete all cache files from disk
  
  CALL
      ur_deletecache(obj)
      
  INPUT
      obj: undoredo object. Cache files will be detected and deleted
      
  OUTPUT
      none

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:31:36

Size:

713 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>deletecachefile.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>ur_cleanupdisk.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>ur_load.m

(back to table of contents)
  ur_load - load data from file for undoredo object
  
  CALL
      data=ur_load(obj,cache_nr,type)
      
  INPUT
      obj
          undoredo object
      cache_nr
          number of cache file
      type
          type of cache file
          
  OUTPUT
      data
          retrieved data

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

20-Mar-2009 15:57:00

Size:

1025 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>undovalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>mbdvalue.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachecleanup.m

(back to table of contents)

ModelitUtilRoot>matlabguru>@undoredo>private>ur_save.m

(back to table of contents)
  ur_save - save cache data data: use correct file- and variable name
  
  CALL
      ur_save(obj,cache_nr,type,data)
      
  INPUT
      obj:
          undoredo object
      cache_nr:
          cache file number
      type:
          cache file type
      data:
          data that need saving
  
  OTPUT
      none

Path:

ModelitUtilRoot\matlabguru\@undoredo\private

Last modified:

17-Aug-2008 17:36:16

Size:

1083 bytes

Calls functions:

ModelitUtilRoot>docutool>show.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>applymenu.m
ModelitUtilRoot>matlabguru>@undoredo>cleanupdisk.m
ModelitUtilRoot>matlabguru>@undoredo>closegroup.m
ModelitUtilRoot>matlabguru>@undoredo>deletequeue.m
ModelitUtilRoot>matlabguru>@undoredo>display.m
ModelitUtilRoot>matlabguru>@undoredo>fieldnames.m
ModelitUtilRoot>matlabguru>@undoredo>flush.m
ModelitUtilRoot>matlabguru>@undoredo>getdata.m
ModelitUtilRoot>matlabguru>@undoredo>getdepend.m
ModelitUtilRoot>matlabguru>@undoredo>getprop.m
ModelitUtilRoot>matlabguru>@undoredo>getsignature.m
ModelitUtilRoot>matlabguru>@undoredo>getsttname.m
ModelitUtilRoot>matlabguru>@undoredo>iscommitted.m
ModelitUtilRoot>matlabguru>@undoredo>isempty.m
ModelitUtilRoot>matlabguru>@undoredo>isemptyqueue.m
ModelitUtilRoot>matlabguru>@undoredo>isfield.m
ModelitUtilRoot>matlabguru>@undoredo>isopen.m
ModelitUtilRoot>matlabguru>@undoredo>label.m
ModelitUtilRoot>matlabguru>@undoredo>logbookentry.m
ModelitUtilRoot>matlabguru>@undoredo>private>cachename.m
ModelitUtilRoot>matlabguru>@undoredo>redo.m
ModelitUtilRoot>matlabguru>@undoredo>setcommitted.m
ModelitUtilRoot>matlabguru>@undoredo>setdata.m
ModelitUtilRoot>matlabguru>@undoredo>setdepend.m
ModelitUtilRoot>matlabguru>@undoredo>setlabel.m
ModelitUtilRoot>matlabguru>@undoredo>setprop.m
ModelitUtilRoot>matlabguru>@undoredo>show.m
ModelitUtilRoot>matlabguru>@undoredo>store.m
ModelitUtilRoot>matlabguru>@undoredo>subsasgn.m
ModelitUtilRoot>matlabguru>@undoredo>subsref.m
ModelitUtilRoot>matlabguru>@undoredo>subsrefBAK.m
ModelitUtilRoot>matlabguru>@undoredo>undo.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>@undoredo>ur_assign.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>getdepend.m
ModelitUtilRoot>matlabguru>store.m

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>private>emptyhistory.m
ModelitUtilRoot>matlabguru>@undoredo>private>add2cache.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m

(back to table of contents)
  
  FUTURE NAME: ur_depend
  
  CALL
      upd=mdlt_dependencies(ind,thistree,othertree1,othertree2,...)
 
  INPUT
      ind      : substruct met te wijzigen velden OF waarde "all"
      thistree : tree waarop "ind" betrekking heeft
      othertree: wordt alleen gebruik om velden te inventariseren 
  OUTPUT
      upd: een structure waar per scherm optie staat of deze geupdate moeten worden (1) of niet (0)

Path:

ModelitUtilRoot\matlabguru\undoredocopy

Last modified:

28-Jun-2010 17:11:46

Size:

1954 bytes

Calls functions:

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_initupd.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_look4change.m

Is called by functions:

ModelitUtilRoot>matlabguru>evaldepend.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_initupd.m

(back to table of contents)
  mdlt_initupd - initialize update fields structure with INIT value
 
  FUTURE NAME: ur_depend_init
  %
  CALL
      upd=mdlt_initupd(agtree,INIT,oldupd)
      
  INPUT
      agtree
          dependency tree
      INIT
          Initialize all fields of output structuer with this value.
          Defaults to false. 
      oldupd
          if specified. The output argument "upd" is initialized with this
          value. 
      
  OUTPUT
      upd
          update structure after initialization
  
  EXAMPLE
  	case 'install'
          HWIN=create_fig;                       %create GUI objects
          tree=GUIstructure;                     %define dependencies in GUI
          agtree=mdlt_mastertree(tree);          %aggregate tree (for fast searching)
          setappdata(HWIN,'mastertree',agtree)   %store result with this window for future use
          ..
          % SOME USER ACTION
          % "ind" now indexes in changed data fields
          ..
          agtree=setappdata(HWIN,'mastertree')    %retrieve result
          upd=mdlt_initupd(agtree,0);             %initialize all with 0
          upd=mdlt_look4change(upd,agtree,ind);   %find out which GUI elements need to be updated
          show(upd);                              %call some function that selectively updates GUI
  
  See also:
    mdlt_mastertree: generate aggregate dependency tree
    mdlt_initupd: initialize update structure
    mdlt_look4change: find out which field must be updated as a result of a
                      structure update
  
  COPYRIGHT
    Nanne van der Zijpp
    Modelit
    Jan 2002

Path:

ModelitUtilRoot\matlabguru\undoredocopy

Last modified:

17-Aug-2008 14:01:49

Size:

2114 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_look4change.m

(back to table of contents)
    mdlt_look4change: find out which field must be updated as a result of a
                      structure update
  
  FUTURE NAME: ur_depend_apply
 
  CALL
      upd=mdlt_look4change(upd,ind,agtree)
   
  INPUT
    upd: previous update structure 
    ind: subs array into struct
    agtree: tree containing list of screen attributes to be updated
  
  CODE EXAMPLE
  	case 'install'
          HWIN=create_fig;                       %create GUI objects
          tree=GUIstructure;                     %define dependencies in GUI
          agtree=mdlt_mastertree(tree);          %aggregate tree (for fast searching)
          setappdata(HWIN,'mastertree',agtree)   %store result with this window for future use
          ..
          % SOME USER ACTION
          % "ind" now indexes in changed data fields
          ..
          agtree=setappdata(HWIN,'mastertree')    %retrieve result
          upd=mdlt_initupd(agtree,0);             %initialize all with 0
          upd=mdlt_look4change(upd,agtree,ind);   %find out which GUI elements need to be updated
          show(upd);                              %call some function that selectively updates GUI
  
  SEE ALSO
    mdlt_mastertree: generate aggregate dependency tree
    mdlt_initupd: initialize update structure
    mdlt_look4change: find out which field must be updated as a result of a
                      structure update
  
  REVISIONS
      JUNE 2005: major redesign. This may affect details of the
      functionality. The field updobjAggreg is introduced. This field
      contains the content of updobj of the child nodes EXCLUDING current
      node (downward aggregation).
      updobj contains the content of updobj of this node and its parents
      (upward aggregation)

Path:

ModelitUtilRoot\matlabguru\undoredocopy

Last modified:

20-Apr-2009 11:34:56

Size:

3481 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>ur_depend.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undoredocopy>mdlt_mastertree.m

(back to table of contents)
  mdlt_mastertree - aggregate "updobj" over structure
  
  FUTURE NAME: ur_depend_set
 
  CALL
      tree=mdlt_mastertree(tree)
  
  INPUT
    tree: dependency tree that defines which object need to be updated if field changes
 
  OUTPUT
    tree: dependency tree that defines which object need to be updated if field changes
          the field updob has now been updated
 
  NOTE:
      atributes need not be defined at the lowest level, attributes passed on at a higher 
      level will be superimposed with the lower level attributes
 
  CODE EXAMPLE
  	case 'install'
          HWIN=create_fig;                       %create GUI objects
          tree=GUIstructure;                     %define dependencies in GUI
          agtree=mdlt_mastertree(tree);          %aggregate tree (for fast searching)
          setappdata(HWIN,'mastertree',agtree)   %store result with this window for future use
          ..
          % SOME USER ACTION
          % "ind" now indexes in changed data fields
          ..
          agtree=setappdata(HWIN,'mastertree')    %retrieve result
          upd=mdlt_initupd(agtree,0);             %initialize all with 0
          upd=mdlt_look4change(upd,agtree,ind);   %find out which GUI elements need to be updated
          show(upd);                              %call some function that selectively updates GUI
  
  SEE ALSO
    setdepend: part of undoredo toolbox
    evaldepend: part of undoredo toolbox
    mdlt_mastertree: generate aggregate dependency tree
    mdlt_initupd: initialize update structure
    mdlt_look4change: find out which field must be updated as a result of a
                      structure update
  
  REVISIONS
      JUNE 2005: major redesign. This may affect details of the
      functionality. The field updobjAggreg is introduced. This field
      contains the content of updobj of the child nodes EXCLUDING current
      node (downward aggergation).
      updobj contains the content of updobj of this node and its parents
      (upward aggregation)

Path:

ModelitUtilRoot\matlabguru\undoredocopy

Last modified:

17-Aug-2008 13:57:44

Size:

4705 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>matlabguru>@undoredo>setdepend.m

(back to table of contents)

ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m

(back to table of contents)
  ur_getopt - initialize GUI options by reading them from file
  
  SUMMARY
  User preferences are settings that apply to the appearance of a
  specific figure. When a figure is closed and opened later on users
  typically expect that the figure re-appears with identical settings.  
  To accomplish this, the user preferences should be saved when the figure
  closes and loaded again when the figure is created. Saving the data can
  best be doen in the figure's deletefunction.  Loading the data typically
  is done in a function that by convention has the name "initOpt" (but any
  other name is allowed)    
  This function initializes the data structure that represents the user
  preferences. This is done in 3 steps: 
  •	create a structure that contains the factory defaults. This is to make
  sure that no errors will occur if the figure is openened for the first
  time;  
  •	load the user preference s as saved when the figure was closed last
  time (see function template "deletef"), and overwrite the factory
  defaults with the values that are loaded from file. This is done by the
  function "ur_getopt";   
  •	set any values that are specific for the current session. For example,
  you may store object handles in the user-preference structure. 
  
  CALL
      opt=ur_getopt(defopt,OPTFILE,varname)
      
  INPUT
      defopt : default options (current function overwerites these)
      OPTFILE: binary file in which options have been saved earlier
      varname: variable name in which options are stored (defaults to "opt)
      
  OUTPUT
      opt: options structure in which data from defopt and OPTFILE are combined
  
  SEE ALSO
      ur_cleanupdisk
      
  EXAMPLE
  Specify this delete function:
  
  Specify this initopt function:    
  	function opt=initopt
  	defopt=struct('field1',100,'field2',200); %define default options
  	opt=ur_getopt(defopt,'options.stt');            %use saved options
  
  	function opt=deletef
    try
  	  opt=getdata(retrieve(gcf,'opt'))
      save(opt.sttBackupName,'opt');
    catch
    end

Path:

ModelitUtilRoot\matlabguru\undoredocopy

Last modified:

01-Dec-2009 00:31:10

Size:

3001 bytes

Calls functions:

ModelitUtilRoot>copystructure.m
ModelitUtilRoot>load_cmp.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ModelitUtilRoot>table>structarray2table.m

(back to table of contents)
  structarray2table - convert array of structures to stucture of arrays
 
  CALL:
   T = structarray2table(S, VERBOSE)
 
  INPUT:
      S(N): array of structures (structarray)
      +----M1(1)
      +----M2(1)
      +----M3(1)
 
  OUTPUT:
      T(1): structure of arrays (tablestruct)
      +----M1(N,1)
      +----M2(N,1)
      +----M3(N,1)
 
  See also: table2structarray

Path:

ModelitUtilRoot\table

Last modified:

17-Apr-2010 11:10:20

Size:

3580 bytes

Calls functions:

ModelitUtilRoot>is_eq.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>utilspath.m

Is called by functions:

ModelitUtilRoot>table>tableRead.m

(back to table of contents)

ModelitUtilRoot>table>tableRead.m

(back to table of contents)
  tableRead - lees een stuurfile met een tabel in, kolom format kan 
              gespecificeerd worden
 
  CALL:
   T = tableRead(fname, fields, formats)
 
  INPUT:
   fname:     naam van het in te lezen bestand
   fields:    cellstring met namen van de kolommen van de tabel
   formats:   format van elke kolom, b.v. {'%s','[%f %f %f]'}
   delimiter: string met scheidingsteken, default ';'
 
  OUTPUT:
   T:      ingelezen tabel, empty if error occurred
   errmsg: string met eventuele foutmelding

Path:

ModelitUtilRoot\table

Last modified:

17-Mar-2010 10:24:38

Size:

3077 bytes

Calls functions:

ModelitUtilRoot>readcell.m
ModelitUtilRoot>table>structarray2table.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ModelitUtilRoot>table>tableheight.m

(back to table of contents)
  tableheight - get height (number of rows) of table
  
  CALL:
   N = tableheight(S)
  
  INPUT:
   S: <struct> a table structure
      
  OUTPUT    
   N: <integer> height of table
  
  See alos: istable

Path:

ModelitUtilRoot\table

Last modified:

16-Jan-2007 17:07:16

Size:

388 bytes

Calls functions:

ModelitUtilRoot>istable.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>@table>height.m

(back to table of contents)

ModelitUtilRoot>table>tableselect.m

(back to table of contents)
  tableselect - select data from struct of arrays (both rows and columns)
  
  CALL:
      T = tableselect(S,indx,flds)
      T = tableselect(S,indx)
      T = tableselect(S,flds)
  
  INPUT:
      S: struct of arrays(tablestruct), all fields must be (N x 1)
      indx: index array or logical vector
      flds: cell array
  
  OUTPUT:
   S: struct of arrays (tablestruct), all fields must be (N x 1)
  
  See also: table2structarray, tableunselect, structarrayselect

Path:

ModelitUtilRoot\table

Last modified:

06-Nov-2009 15:18:14

Size:

2538 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>jacontrol>tableWindow.m
ModelitUtilRoot>@table>select.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>serializeDOM.m

(back to table of contents)
  serializeDOM - serialise a DOM by transformation to a string or file
 
  CALL:
      String = serialize(DOM)
      serialize(DOM,fileName)
 
  INPUT:
      DOM:      <java-object> org.apache.xerces.dom.DocumentImpl
      fileName: <string> (optional) valid filename
 
  OUTPUT:
      String: <string>  if nargin == 1 the serialised DOM
              <boolean> if nargin == 2, 
                                     0 -> saving to fileName not successful
                                     1 -> saving to fileName successful
 
  EXAMPLE:
      obj = xml %create an empty xml object
      obj.date = now %add fields with values
      obj.type = 'test'
      save(obj,'test.xml')
      obj('test.xml')
      inspect(obj)
  
  See also: xml, xml/inspect, xml/view, xml/save
  
  Revisions
      20100825 (ZIJPP): modified help info

Path:

ModelitUtilRoot\xml_toolbox

Last modified:

25-Aug-2010 12:27:56

Size:

2165 bytes

Calls functions:

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>struct2xmlobj.m

(back to table of contents)

Path:

ModelitUtilRoot\xml_toolbox

Last modified:

29-Aug-2010 18:02:31

Size:

5162 bytes

Calls functions:

ModelitUtilRoot>xml_toolbox>@xml>xml.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>addns.m

(back to table of contents)
  addns - add a namespace definition to the xml-object
  
  CALL:
   obj = addns(obj,S)
  
  INPUT:
   obj: <xml-object>
   S:   <struct> fieldnames --> namespace variable
                 values     --> namespace value
        <cell array> nx2, first column  --> namespace variable 
                          second column --> namespace value 
  
  OUTPUT:
   obj: <xml-object>
  
  EXAMPLE
   %create an xml-object
   obj = xml(fullfile(pwd,'examples','namespaces.xml'))
  
   %try to get attribute
   obj.width.('@nsdim:dim')
  
   %add namespace
   addns(obj,{'nsdim','http://www.modelit.nl/dimension'})
  
   %get attribute
   obj.width.('@nsdim:dim')
  
  See also: xml, xml/listns, xml/clearns, xml/removens, xml/getns

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:19:02

Size:

947 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>clearns.m

(back to table of contents)
  clearns - remove all the namespace definitions from the xml-object
  
  CALL:
   obj = addns(obj,S)
  
  INPUT:
   obj: <xml-object>
   S:   <struct> fieldnames --> namespace variable
                 values     --> namespace value
        <cell array> size: nx2, first column  --> namespace variable 
                          second column --> namespace value 
  
  OUTPUT:
   obj: <xml-object> with no namespace definitions
  
  EXAMPLE
   %create an xml-object
   obj = xml(fullfile(pwd,'examples','namespaces.xml'))
  
   %add namespaces
   addns(obj,{'ns','http://www.w3schools.com/furniture'})
   addns(obj,{'nsdim','http://www.modelit.nl/dimension'})
   
   %list namespaces
   listns(obj)
  
   %clear all defined namespaces
   clearns(obj)
  
   %list namespaces
   listns(obj)
  
  See also: xml, xml/listns, xml/addns, xml/removens, xml/getns

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:21:52

Size:

1002 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>display.m

(back to table of contents)
  display - display information about an xml-object on the console
 
  CALL:
   display(obj)
 
  INPUT:
   obj: <xml-object>
 
  OUTPUT:
   none, information about the xml-object is displayed on the console
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %display function was automatically called by Matlab
  
  See also: xml, display

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:34:26

Size:

1764 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m

(back to table of contents)
  fieldNames - get the names of the direct children of the root node
               c.f. the function fieldnames for structures
  CALL:
   fields = fieldnames(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   fields: <cellstring> with the nodenames of the children of the root node
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   fieldnames(obj)
  
   book1 = obj.book(1)
   fieldnames(book1{1})
  
  See also: xml, xml/getRoot, xml/noNodes, xml/isfield

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

26-Jun-2008 00:12:41

Size:

1527 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>get.m

(back to table of contents)
  get - get the value of the specified property for an xml-object (from the
        object itself not from the xml)
 
  CALL:
   prop_val = get(obj,prop_name)
 
  INPUT:
   obj:         <xml-object>
   prop_name:   <string> propertyname, possible values:
                        - DOM  <org.apache.xerces.dom.DeferredDocumentImpl>
                               with the DOM representation of the xml
                        - file <string> with filename
                        - NS   <java.util.HashMap> with namespaces
 
  OUTPUT:
   prop_val:     the value of the specified property for the xml-object
                 <struct> with all properties plus values if nargin == 1
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %get all property-value pairs
   get(obj)
   %get the (D)ocument (O)bject (M)odel
   get(obj,'DOM')
  
  See also: xml, xml/set

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

01-Jun-2006 17:27:18

Size:

1547 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>getRoot.m

(back to table of contents)
  getRoot - get the root node of an xml-object and its name
  
  CALL:
   [rootname root] = getRoot(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   rootname: <string> the name of the root node
   root:     <java object> org.apache.xerces.dom.DeferredElementNSImpl or
                           org.apache.xerces.dom.DeferredElementImpl
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   [rootname root] = getRoot(obj)
  
  See also: xml, xml/noNodes

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:36:14

Size:

648 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>getns.m

(back to table of contents)
  getns - retrieve a namespace definition from the xml-object
  
  CALL:
   S = listns(obj,key)
  
  INPUT:
   obj: <xml-object>
   key: <string> with a namespace variable for which the definition has to
                 be retrieved
  
  OUTPUT:
   S: <string> with the namespace definition
  
  EXAMPLE
   %create an xml-object
   obj = xml(fullfile(pwd,'examples','namespaces.xml'))
  
   %add namespace
   addns(obj,{'nsdim','http://www.modelit.nl/dimension'})
  
   %get namespace
   getns(obj,'nsdim')
  
  See also: xml, xml/addns, xml/clearns, xml/removens, xml/listns

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:20:28

Size:

685 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>inspect.m

(back to table of contents)
  inspect - visualize the xml document as a tree in a separate window
 
  CALL:
   inspect(obj)
 
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   none, the DOM representation of the xml document appears as a tree 
         in a separate window
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   inspect(obj)
  
  See also: xml, xml/view

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

01-Oct-2009 15:24:15

Size:

2191 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>isempty.m

(back to table of contents)
  isempty - true if the xml-object has no fields
  
  CALL:
   tf = isempty(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   tf: <boolean> true if the DOM representation of the xml document does
                 not contain any nodes, or equivalently the xml-document
                 has no fields
  
  EXAMPLE:
   %create an empty xml-object
   obj = xml
   isempty(obj)
  
   %add a field to the xml-object
   obj.field = 'field'
   isempty(obj)
  
   %remove field from the xml-object
   rmfield(obj,'field');
   isempty(obj)
  
  See also: xml, xml/noNodes, xml/fieldnames, xml/getRoot, xml/rmfield

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:53:38

Size:

790 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>isfield.m

(back to table of contents)
  isfield - true if at least one node satisfies the indexing 'sub'
  
  CALL:
   tf = isfield(obj,field)
  
  INPUT:
   obj: <xml-object>
   sub: <string> index into xml document (same format as indexing into
                 Matlab structures) e.g. 'book(1)' or 'book(1).title' 
                 result in the same substructs as would be obtained if 
                 S.book(1)or S.book(1).title were used (S a Matlab 
                 structure)
        <string> with xpath expression
  
  OUTPUT:
   tf: <boolean>  true if at least one node satisfies the indexing 'sub'
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   isfield(obj,'book(1:2)')
   isfield(obj,'book(2).@category')
   %N.B. in the following statement true is return although the number of
   %books is 4, this is because book(2:4) exist
   isfield(obj,'book(2:10)')
  
   %examples with xpath expression
   %are there any books in english?
   isfield(obj,'bookstore/book/title[@lang=''en'']')
   %are there any books in spanish?
   isfield(obj,'bookstore/book/title[@lang=''es'']')
   %are there books cheaper than 30 euro
   isfield(obj,'bookstore/book[price < 30]')
   
  See also: xml, xml/fieldNames, xml/rmfield

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

02-Jun-2006 17:17:54

Size:

1618 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>listns.m

(back to table of contents)
  listns - list the namespace definitions of the xml-object
  
  CALL:
   listns(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   no direct output, the defined namespaces are displayed on the console
  
  EXAMPLE
   %create an xml-object
   obj = xml(fullfile(pwd,'examples','namespaces.xml'))
   
   %no namespaces defined yet
   listns(obj) 
  
   %add namespaces
   addns(obj,{'ns','http://www.w3schools.com/furniture'})
   addns(obj,{'nsdim','http://www.modelit.nl/dimension'})
   
   %list namespaces
   listns(obj)
  
  See also: xml, xml/addns, xml/clearns, xml/removens, xml/getns

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:21:22

Size:

995 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>noNodes.m

(back to table of contents)
  noNodes - get the total number of nodes present in the DOM-representation
            of the xml document
  
  CALL:
   N = noNodes(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   N: <integer> with the total number of nodes in the DOM object
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   noNodes(obj)
  
  See also: xml, xml/getRoot

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:14:12

Size:

585 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>removens.m

(back to table of contents)
  removens - remove a namespace definition from the xml-object
 
  CALL:
   obj = removens(obj,S)
 
  INPUT:
   obj: <xml-object>
   S:   <char array> with names of the namespace definitions to be removed
        <cell array> with names of the namespace definitions to be removed
 
  OUTPUT:
   obj: <xml-object>
 
  EXAMPLE
   %create an xml-object
   obj = xml(fullfile(pwd,'examples','namespaces.xml'))
  
   %add namespace
   addns(obj,{'nsdim','http://www.modelit.nl/dimension'})
  
   %get attribute
   obj.width.('@nsdim:dim')
  
   %remove namespace
   removens(obj,{'nsdim'})
  
   %try to get attribute
   obj.width.('@nsdim:dim')
  
  See also: xml, xml/listns, xml/clearns, xml/addns, xml/getns

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 06:26:44

Size:

896 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>rmfield.m

(back to table of contents)
  rmfield - remove elements and attributes from an xml-object which satisfy
            the indexing 'sub'
  
  CALL:
   rmfield(obj,sub)
  
  INPUT:
   obj: <xml-object>
   sub: <string> index into xml document (same format as indexing into
                 Matlab structures) e.g. 'book(1)' or 'book(1).title' 
                 result in the same substructs as would be obtained if 
                 S.book(1)or S.book(1).title were used (S a Matlab 
                 structure)
        <string> with xpath expression
  
  OUTPUT:
   none, the xml-object is updated
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   rmfield(obj,'book(1:2)')
   rmfield(obj,'book(2).@category')
   inspect(obj)
  
   %examples with xpath expression
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %remove books cheaper than 30 euro
   rmfield(obj,'bookstore/book[price < 30]')
   inspect(obj)
  
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %remove books in the category 'WEB'
   rmfield(obj,'bookstore/book[@category = ''WEB'']')
   inspect(obj)
  
  See also: xml, xml/fieldNames, xml/isfield

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

02-Jun-2006 17:18:00

Size:

1731 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>save.m

(back to table of contents)
  save - save the xml-object as an xml file
 
  CALL:
   obj = save(obj,fname)
 
  INPUT:
   obj:   <xml-object>
   fname: <string> (optional) the name of the xml file, if fname is not
                              specified a save dialog will pop up
 
  OUTPUT:
   obj: <xml-object> the file field of the xml-object is updated and an xml
                     file is created
  
  EXAMPLE:
   obj = xml                  %create an empty xml object
   obj.date = datestr(now)    %add fields with values
   obj.description = 'test'
   obj = save(obj,'test.xml') %save object by specifying filename
   obj = xml('test.xml')
   inspect(obj);
  
  See also: xml, xml/view, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

06-Jun-2006 07:00:26

Size:

1336 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>serializeDOM.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m

(back to table of contents)
  selectNodes - select nodes from the XML DOM tree
  
  CALL:
   nodesList = selectNodes(obj,ind)
  
  INPUT:
   obj: <xml-object>
   ind: <struct array> with fields
                       - type: one of '.' or '()'
                       - subs: subscript values (field name or cell array
                               of index vectors)
        <string> with an xpath expression
  
  OUTPUT:
   nodesList: <java object> java.util.ArrayList with tree nodes
  
  See also: xml, xml/xpath, xml/subsref, xml/subsasgn,
            xml/private/buildXpath

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 07:17:48

Size:

968 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>set.m

(back to table of contents)
  set - set the value of the specified property for an xml-object
 
  CALL:
   set(obj,prop_name,prop_value)
 
  INPUT:
   obj:         <xml-object>
   prop_name:   <string> propertyname, possible values:
                        - DOM  <org.apache.xerces.dom.DeferredDocumentImpl>
                               with the DOM representation of the xml
                        - file <string> with filename
                        - NS   <java.util.HashMap> with namespaces
   prop_value:   the value of the property to be set for the xml-object
  
  OUTPUT:
   obj: <xml-object> with the property prop_name set to prop_value
  
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %get all property-value pairs
   get(obj,'file')
   %get the (D)ocument (O)bject (M)odel
   obj = set(obj,'file',fullfile(pwd,'examples','books_changed.xml'))
   get(obj,'file')
  
  See also: xml, xml/get

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

01-Jun-2006 17:28:20

Size:

2025 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m

(back to table of contents)
  storeStructure - store contents of structure in xml object
 
  CALL:
   obj = storeStructure(obj,S)
 
  INPUT:
   S: <struct> or <struct array>
 
  OUTPUT:
   obj: <xml-object>
  
  EXAMPLE:
   obj=xml
   obj = storeStructure(obj,S)
   inspect(obj)
  
  NOTES
      - This function is called by xml object constructor, in case where
      constructure is called with a structure as its input argument.
      - Although alternative uses of this method may be possible, they have
      not yet been tested
      
  See also: xml

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

29-Aug-2010 17:49:10

Size:

3316 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m

(back to table of contents)
  subsasgn - assign new values to the xml document in an xml-object
 
  CALL:
   obj = subsassgn(obj,ind,data)
 
  INPUT:
   obj:  <xml-object>
   ind:  <struct array> with fields
                        - type: one of '.' or '()'
                        - subs: subscript values (field name or cell array
                                of index vectors)
         <string> with an xpath expression
   data: (optional) with the values to be put in the by ind defined
                    fields in the xml-object, allowed types:
                     - <struct> matlab structure
                     - <xml-object>
                     - <org.apache.xerces.dom.ElementImpl>
 
  OUTPUT:
   obj: <xml-object>
  
  See also: xml, xml/subsref, xml/xpath, subsasgn

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 07:14:00

Size:

960 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>subsref.m

(back to table of contents)
  subsref - subscripted reference for an xml object
 
  CALL:
   S = subsref(obj,ind)
 
  INPUT:
   obj:  <xml-object>
   ind:  <struct array> with fields
                        - type: one of '.' or '()'
                        - subs: subscript values (field name or cell array
                                of index vectors)
         <string> with an xpath expression
 
  OUTPUT:
   S: <cell array> with contents of the referenced nodes, can contain
                   xml objects, strings or numbers
  
  See also: xml, xml/subsasgn, xml/xpath, subsref

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

08-Jun-2006 07:13:44

Size:

665 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>view.m

(back to table of contents)
  view - convert the xml-object into a string
  
  Note:  This method has been superseeded by the method "xml2str"
         the method view is kept for backward compability but will become
         obsolete in the future.
 
  CALL:
   view(obj)
   S=view(obj)
 
  INPUT:
   obj:     <xml-object>
 
  OUTPUT:
   S:       <string> with the xml-document
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   view(obj)
 
  See also: xml, xml/save, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

25-Aug-2010 16:35:30

Size:

733 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>serializeDOM.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xml.m

(back to table of contents)
  xml - constructor for an xml-object
 
  CALL:
   obj = xml(FileName,isNameSpaceAware,isValidating)
 
  INPUT:
   FileName:         <string> name of the sourcefile
                     <string> the xml string
                     <java-object> with a D(ocument) (O)bject (M)odel
                     <struct> a Matlab structure
   isNameSpaceAware: <boolean> (optional) (default == 1) ignore namespaces
   isValidating:     <boolean> (optional) (default == 0) validate document
 
  OUTPUT:
   obj: <xml-object> with fields:
                     - DOM:  <java object> the DOM object
                     - file: <string> the name of the xml source
                     - NS:   <java object> a hashmap with namespace
                                           definitions
                     N.B. obj is empty when an error occurred
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   inspect(obj)
 
   %create an xml from a sourcefile
   obj = xml(java.io.File(fullfile(pwd,'examples','books.xml')))
   inspect(obj)
  
   %create an xml from a Matlab structure
   obj = xml(dir)
   inspect(obj)
 
   %create an xml directly from a string
   str = '<book category="MATHS"><title lang="en">Nonlinear Programming</title><author>Dimitri P. Bertsekas</author></book>'
   obj = xml(str)
   inspect(obj)
  
   %create an xml directly from an inputstream
   obj = xml(java.io.FileInputStream((fullfile(pwd,'examples','books.xml'))))
   inspect(obj)
  
   %create an xml from a sourcefile and validate against a dtd (specified
   %in the xml itself
   obj = xml(fullfile(pwd,'examples','note_dtd.xml'),0,1)
  
   %create an xml from a sourcefile and validate against a xsd (specified
   %in the xml itself
   obj = xml(fullfile(pwd,'examples','note_xsd.xml'),1,1)
 
  See also: xml/view, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

29-Aug-2010 16:33:39

Size:

8556 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>jacontrol>@jacontrol>get.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>struct2xmlobj.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xml2str.m

(back to table of contents)
  xml2str - convert the xml-object into a string
  
  Note:  This method replaces the method "view"
         the method view is kept for backward compability
 
  CALL:
   xml2str(obj)
   S=xml2str(obj)
 
  INPUT:
   obj:     <xml-object>
 
  OUTPUT:
   S:       <string> with the xml-document
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   xml2str(obj)
 
  See also: xml, xml/save, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

01-Oct-2009 10:40:00

Size:

680 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>serializeDOM.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m

(back to table of contents)
  xml2struct - transform xml object to Matlab structure if contents of XML
               permit this
  
  CALL
      s=xml2struct(obj)
      s=xml2struct(obj,NOCELL)
      
  INPUT
      obj: XML object
      NOCELL: if true, do NOT store data in cells. Defaults to false
      
  OUTPUT
     corresponding Matlab structure
 
  NOTE
     not all XML documents can be represented as a Matlab strucure if XML
     contents do not fit the following error results:
     "XML contents do not fit in Matlab structure"

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

03-Jan-2009 13:42:07

Size:

3593 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m

(back to table of contents)
  xml - constructor for an xml-object
 
  CALL:
   obj = xml(FileName,isNameSpaceAware,isValidating)
 
  INPUT:
   FileName:         <string> name of the sourcefile
                     <string> the xml string
                     <java-object> with a D(ocument) (O)bject (M)odel
                     <struct> a Matlab structure
   isNameSpaceAware: <boolean> (optional) (default == 1) ignore namespaces
   isValidating:     <boolean> (optional) (default == 0) validate document
 
  OUTPUT:
   obj: <xml-object> with fields:
                     - DOM:  <java object> the DOM object
                     - file: <string> the name of the xml source
                     - NS:   <java object> a hashmap with namespace
                                           definitions
                     N.B. obj is empty when an error occurred
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   inspect(obj)
 
   %create an xml from a sourcefile
   obj = xml(java.io.File(fullfile(pwd,'examples','books.xml')))
   inspect(obj)
  
   %create an xml from a Matlab structure
   obj = xml(dir)
   inspect(obj)
 
   %create an xml directly from a string
   str = '<book category="MATHS"><title lang="en">Nonlinear Programming</title><author>Dimitri P. Bertsekas</author></book>'
   obj = xml(str)
   inspect(obj)
  
   %create an xml directly from an inputstream
   obj = xml(java.io.FileInputStream((fullfile(pwd,'examples','books.xml'))))
   inspect(obj)
  
   %create an xml from a sourcefile and validate against a dtd (specified
   %in the xml itself
   obj = xml(fullfile(pwd,'examples','note_dtd.xml'),0,1)
  
   %create an xml from a sourcefile and validate against a xsd (specified
   %in the xml itself
   obj = xml(fullfile(pwd,'examples','note_xsd.xml'),1,1)
 
  See also: xml/view, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

19-Dec-2008 15:26:59

Size:

7454 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>struct2xmlobj.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xpath.m

(back to table of contents)
  xpath - carry out a set or get for an xml-object using xpath syntax
 
  CALL:
   S = xpath(obj,ind)
   S = xpath(obj,ind,data)
 
  INPUT:
   obj:  <xml-object>
   ind:  <struct array> with fields
                        - type: one of '.' or '()'
                        - subs: subscript values (field name or cell array
                                of index vectors)
         <string> with an xpath expression
   data: (optional) with the values to be put in the by ind defined
                    fields in the xml-object, allowed types:
                     - <struct> matlab structure
                     - <xml-object>
                     - <org.apache.xerces.dom.ElementImpl>
 
  OUTPUT:
   S:       <cell array> in nargin == 2 (get is used)
            <xml-object> if nargin == 3 (set is used)
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','books.xml'))
   %select the book with title 'Harry Potter'
   book = xpath(obj,'parent::/bookstore/book[title="Harry Potter"')
   inspect(book{1})
 
  See also: xml, xml/set, xml/get, xml/subsref, xml/subsasgn,
            xml/private/buildXpath
 

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

26-Jun-2008 10:45:40

Size:

9923 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>xslt.m

(back to table of contents)
  xslt - transform the xml-object to html by using a stylesheet
 
  CALL:
   HTMLstring = xslt(obj,xsl,fileName)
 
  INPUT:
   obj:      <xml-object>
   xsl:      <string> filename of the stylesheet
   fileName: <string> (optional) the name of the file to which the HTML has
                                 to be saved
 
  OUTPUT:
   HTMLstring:  <string> to HTML transformed XML string
 
  EXAMPLE:
   %create an xml from a sourcefile
   obj = xml(fullfile(pwd,'examples','cd_catalog.xml'))
   HTMLstring = xslt(obj,fullfile(pwd,'examples','cd_catalog.xsl'))
   %display in browser
   web(['text://' HTMLstring]);
  
  See also: xml, xml/save, web, xslt

Path:

ModelitUtilRoot\xml_toolbox\@xml

Last modified:

13-Jun-2006 14:18:28

Size:

1705 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>serializeDOM.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m
ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m
ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m

(back to table of contents)
  buildXPath - create an XPath object for an XML DOMtree
 
  CALL: 
   x = buildXPath(string,nsStruct)
 
  INPUT:
   string:     <string> XPath expression
   Namespaces: <java object> (optional) a java.util.HashMap with namespace
                                        definitions
 
  OUTPUT:
   x: <java object> org.jaxen.dom.DOMXPath
  
  See also: xml, xml/xpath, xml/subsasgn, xml/subsref

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:00:24

Size:

1223 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m

(back to table of contents)
  chararray2char - convert char array to string
  
  CALL:
   str = chararray2char(str)
  
  INPUT:
   str: <char array>
  
  OUTPUT:
   str: <string>
  
  See also: xml, xml/xpath, xml/subsasgn, xml/private/toString

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:50:54

Size:

409 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>emptyDocument.m

(back to table of contents)
  emptyDocument - create an empty Document Object Model (DOM) (only the
                  root node is present)
 
  CALL:
   document = emptyDocument(root)
 
  INPUT:
   root: (optional) <string> name of the root node
                    <org.apache.xerces.dom.ElementImpl>
                    <org.apache.xerces.dom.ElementNSImpl>
                    default == 'root'
  
  OUTPUT:
   document: <java-object> org.apache.xerces.dom.DocumentImpl
 
  See also: xml, xml/view, xml/inspect

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

02-Jun-2006 08:10:50

Size:

1154 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>fieldInfo.m

(back to table of contents)
  fieldInfo - determine the number and names of the direct children of the 
              root node and the name of the root node
  
  CALL:
   S = fieldInfo(obj)
  
  INPUT:
   obj: <xml-object>
  
  OUTPUT:
   S:   <struct> with fields
        - root     : <string> name of the root node
        - children : <struct> with fields
                    - name:      <string> names of the direct children of  
                                           the root node
                    - frequency: <int> number of time a certain node
                                       appears
  
  See also: xml, xml/display

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:36:56

Size:

1322 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>buildXPath.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>display.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>ind2xpath.m

(back to table of contents)
  ind2xpath - convert a matlab substruct into an xpath string
  
  CALL:
   xpathstr = ind2xpath(ind)
   
  INPUT:
   ind: <struct> see substruct
  
  OUTPUT:
   xpathstr: <string> xpath equivalent of the substruct
  
  See also: xml, xml/private/buildXpath, xml/subsasgn, xml/subsref,
            xml/xpath, substruct

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:28:44

Size:

1042 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>struct2hash.m

(back to table of contents)
  struct2hash - convert a matlab structure into a java hashmap
  
  CALL:
   H = struct2hash(S,H)
  
  INPUT:
   S: <struct> fieldnames --> hashmap keys
               values     --> hashmap entries
   H: <java object> (optional) java.util.HashMap
  
  OUTPUT:
   H: <java object> java.util.HashMap
  
  See also: xml, xml/private/buildXpath

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:28:36

Size:

577 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>addns.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>sub2ind.m

(back to table of contents)
  sub2ind - convert a string into a struct array of type substruct, for
            indexing into xml documents as if they were Matlab structures
  
  CALL:
   ind = sub2ind(S)
  
  INPUT:
   S: <string> index into xml document (same format as indexing into
               Matlab structures) e.g. 'book(1)' or 'book(1).title' result
               in the same substructs as would be obtained if S.book(1) or
               S.book(1).title were used (S a Matlab structure).
  
  OUTPUT:
   ind: <struct array> with fields:
                       - type -> subscript types '.', '()', or '{}'
                       - subs -> actual subscript values (field names or 
                                 cell arrays of index vectors)
  
  EXAMPLE: 
   ind = sub2ind('book(1)')
  
  See also: xml, xml/isfield, xml/rmfield, substruct

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:29:08

Size:

1223 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m

(back to table of contents)

ModelitUtilRoot>xml_toolbox>@xml>private>toString.m

(back to table of contents)
  toString - convert java object, cellstring or char array to string
  
  CALL:
   S = toString(S)
  
  INPUT:
   S: <cell string>
      <char array>
      <java object>
  
  OUTPUT:
   S: <string>
  
  See also: xml, xml/xpath, xml/subsasgn

Path:

ModelitUtilRoot\xml_toolbox\@xml\private

Last modified:

08-Jun-2006 08:44:10

Size:

653 bytes

Calls functions:

ModelitUtilRoot>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>addns.m
ModelitUtilRoot>xml_toolbox>@xml>clearns.m
ModelitUtilRoot>xml_toolbox>@xml>display.m
ModelitUtilRoot>xml_toolbox>@xml>fieldnames.m
ModelitUtilRoot>xml_toolbox>@xml>get.m
ModelitUtilRoot>xml_toolbox>@xml>getRoot.m
ModelitUtilRoot>xml_toolbox>@xml>getns.m
ModelitUtilRoot>xml_toolbox>@xml>inspect.m
ModelitUtilRoot>xml_toolbox>@xml>isempty.m
ModelitUtilRoot>xml_toolbox>@xml>isfield.m
ModelitUtilRoot>xml_toolbox>@xml>listns.m
ModelitUtilRoot>xml_toolbox>@xml>noNodes.m
ModelitUtilRoot>xml_toolbox>@xml>private>chararray2char.m
ModelitUtilRoot>xml_toolbox>@xml>removens.m
ModelitUtilRoot>xml_toolbox>@xml>rmfield.m
ModelitUtilRoot>xml_toolbox>@xml>save.m
ModelitUtilRoot>xml_toolbox>@xml>selectNodes.m
ModelitUtilRoot>xml_toolbox>@xml>set.m
ModelitUtilRoot>xml_toolbox>@xml>storeStructure.m
ModelitUtilRoot>xml_toolbox>@xml>subsasgn.m
ModelitUtilRoot>xml_toolbox>@xml>subsref.m
ModelitUtilRoot>xml_toolbox>@xml>view.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ModelitUtilRoot>xml_toolbox>@xml>xml2str.m
ModelitUtilRoot>xml_toolbox>@xml>xml2struct.m
ModelitUtilRoot>xml_toolbox>@xml>xmlBK.m
ModelitUtilRoot>xml_toolbox>@xml>xpath.m
ModelitUtilRoot>xml_toolbox>@xml>xslt.m

Is called by functions:

ModelitUtilRoot>xml_toolbox>@xml>xpath.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>ChainRule.m

(back to table of contents)
  ChainRule - kettingregel voor differentieren
 
  CALL:
   transform = ChainRule(transform1,transform2)
 
  INPUT:
   transform1:  <struct>
                 - type
                   - linear:   tijdsinvariant lineaire transformatie: y=A*x
                   - diagonal: tijdsafhankelijke transformatie, alleen
                               gradient van de transformatie gespecificeerd
                               aantal inputs is gelijk aan aantal output,
                               transformatie matrix is diagonaal
                   - full:     tijdsafhankelijke transformatie, alle 
                               argumenten gespecificeerd
                 - M: transformatie matrix. vorm hangt van type af
                 - Ninput: aantal inputs hoog
                 - Noutput: aantal outputs hoog
  transform2:   <struct> zie transform1
 
  OUTPUT:
   transform:   <struct> zie transform1
 

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

03-Nov-2006 10:52:52

Size:

8619 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)
  EstimateConhop3 - Schat de reeksen van de hoofdsensoren bij m.b.v. de
                    Conhop operator, callback van het databeheer scherm 
  CALL:
   db = EstimateConhop3(obj, event, opt, db, IDsPredict)
 
  INPUT:
   obj:         <handle> van de 'calling' uicontrol
   event:       leeg, standaard argument van een callback
   opt:         <struct> berekeningsopties
                 - improveInit:   (1/0) verbeter initiele schatting
                 - fastRepair:    (1/0) toepassen fast repair
                 - fastRepairVal: (N  ) voer N iteraties uit
                 - optim:         (1/0) pas conhop optimalisatie toe
                 - estimateNeven  (1/0) schatten op basis van Neven sensoren
                 - estimateall    (1/0) schatten alles
  db:           <struct> de centrale database
  IDsPredict:   <vector> (optioneel) met indices van de te voorspellen 
                reeksen, default is alles bijschatten
 
  OUTPUT:
   db:          <struct> de centrale database, met de geschatte
                hoofdsensoren in de V-velden
    

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

10-Mar-2009 20:00:56

Size:

37963 bytes

Calls functions:

ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>strcol.m
ModelitUtilRoot>struct2char.m
ModelitUtilRoot>struct2str.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m
ApplicationRoot>wavixIV>CONHOP>SimulNN.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m
ApplicationRoot>wavixIV>CONHOP>dispdump.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>NN_depend.m

(back to table of contents)
  NN_depend - bepaal welke reeksen nodig zijn om de neurale netwerken door
              te kunnen rekenen
 
  CALL:
   [IDsDepend,IDsMissing,doubleIDS,WkeyMissing,IDs2NN_indx] = NN_depend(db,NN_name,IDs)
 
  INPUT:
   db:          <struct> de centrale database
   NN_name:     <string> met de te gebruiken netwerken 
                      - 'netwerk' voor hoofdnetwerken
                      - 'convnetwerk' voor conversienetwerken
   IDs:         <vector> met indices van de bij te schatten reeksen
 
  OUTPUT:
   IDsDepend:   <vector> met de IDs van de benodigde invoer reeksen
                (voor zover gevonden)
   IDsMissing:  <vector> met de IDs van de te voorspellen reeksen waarbij
                geen neuraal netwerk gevonden kon worden 
   doubleIDS:   <struct> met de sleutels behorend bij IDs die op meer dan 1
                manier berekend kunnen worden. met velden
                        - sLoccod
                        - sParcod
                        - sVatcod
   WkeyMissing: <struct> met de sleutels van benodigde invoerreeksen die
                niet aanwezig zijn in het werkgebied. met velden
                        - sLoccod
                        - sParcod
                        - sVatcod
   IDs2NN_indx: <vector> met de de indices van de te gebruiken netwerken
                die corresporen met IDs (0 op de plaatsen van niet gevonden
                reeksen)
 
  See also: selectPredictable
 

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

29-Nov-2006 11:13:26

Size:

3946 bytes

Calls functions:

ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>struct2str.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>SimulNN.m

(back to table of contents)
  SimulNN - simultane toepassing neurale netwerken
  
  CALL:
   [W_est,stdW_est,JacW] = SimulNN(W,stdW,f_required,f_3,NN_data)
 
  INPUT:
   W:          <matrix> met data (aantal perioden bij aantal reeksen)
   stdW:       <matrix> met stdafw (zelfde grootte als W)
   f_required: <lineaire index> de elementen die herberekend moeten worden
   f_3:        <index> de gevraagde KOLOMMEN uit de Jacobiaan, dat zijn
               de vrij te varieren variabelen
   NN_data:    <struct> read only met gegevens voor de neurale netwerken
               met velden:
                - Wkey:             uit M.Wkey
                - NetworkStructObj: een netwerkobject
                - SensorIndx:       de hoofdsensoren
                - diatijd:          uit M.diatijd
                - DiaIndx:          uit M.DiaIndx
  
  OUTPUT:
   W_est: <vector> met geschatte waarden 
          (hoogte=lengte(f_required))
   stdW : <vector> met bijbehorende standaard afwijkingen
          (hoogte=lengte(f_required))
   JacW:  <matrix> met gedeelte van de Jacobiaan
          (hoogte=lengte(f_required) breedte=lengte(f_3))

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

06-Aug-2007 17:21:12

Size:

15768 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m

(back to table of contents)
  SimulateNeuralNetwork2 - Simuleer het neurale netwerk in NetworkStruct
 
  CALL:
   [output,sigma,message,jaco] = SimulateNeuralNetwork2(W,stdW,Wkey,NetworkStruct,periodeIndex)
 
  INPUT:
   W:              <matrix> aantal periodes bij aantal benodigde reeksen 
                   voor de neurale netwerken, met geobserveerde waarden
   stdW:           <matrix> aantal periodes bij aantal benodigde reeksen 
                   voor de neurale netwerken, met betrouwbaarheden
   Wkey            <struct> bijbehorende sleutels (ZIE sleutel2struct) 
                   lengte is aantal benodigde reeksen, met velden:
                      - sLoccod: <string>
                      - sParcod: <string> 
                      - sVatcod: <string>                           
   NetworkStruct   <struct> structure met o.a. een veld netwerk
                   met een netwerk structuur
   periodeIndex    <vector> (optioneel) index van de te rijen (periodes),
                   wordt gebruikt met conhop
  OUTPUT:
   output          <vector> van lengte periodeIndex met voorspelde waarden
   sigma           <vector> van lengte periodeIndex met voorspelde standaarddeviaties
   message         <string> met eventuele boodschap (nog niet gebruikt)
   jaco            <sparse matrix> hoogte=#periodeIndex;
                                   breedte=prod(size(W)), de Jacobiaan
             

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

20-Mar-2007 21:35:48

Size:

12903 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>mapstd.m
ApplicationRoot>WavixIV>neural501>processpca.m
ModelitUtilRoot>dprintf.m
ApplicationRoot>wavixIV>CONHOP>ChainRule.m
ApplicationRoot>wavixIV>CONHOP>matgetvar2.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>SimulNN.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>TestVars.m

(back to table of contents)
  TestVars - test of de variabelen in NetworkStruct.data aanwezig zijn in 
             de database
 
  CALL:
   result = TestVars(M,NetworkStruct,mode)
 
  INPUT:
   M:             <struct> de kopie van de centrale database (via db2mat)
   NetworkStruct: <struct> met relevante velden
                           - NetworkStruct.data.invoer en
                           - NetworkStruct.data.uitvoer
   mode:          <string> mogelijke waarden
                           - 'training'
                           - 'simulation'
 
  OUTPUT:
   result:        <cellstring> met de namen van de elementen die niet
                  in de database zitten, leeg als alles ok
 

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

24-Oct-2006 17:33:04

Size:

3791 bytes

Calls functions:

ModelitUtilRoot>is_in_struct.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>conhopobjfun2.m

(back to table of contents)
  conhopobjfun2 - de doelfunctie voor de Consistency Measure
 
  CALL:
   [f,g,H] = conhopobjfun2(x,funpars)
 
  INPUT:
   x       : de te varieren variabele
   funpars : cell array met parameters, in de volgende volgorde:
              M                : een kopie van het werkgebied
              SensorIndx       : SensorIndx(i) hoort bij het netwerk met index i
                                 * geeft aan welke kolom in matrix M voorspeld wordt
                                 * correspondeert met NetworkStructObj
              NetworkStruct    : struct array met neurale netwerken
              I_hiaat          : Lineaire index naar de hiaten (De index van x!!)
              I_affected       : Indices van de elementen die door I_hiaat worden
                                 beinvloed. Cell-array correspondeert met NetworkStruct
              I_jacaffected    : geeft aan welke hiaten verantwoordelijk
                                 zijn voor beinvloeding, correspondeert met I_affected, uit
                                 I_affected kan de reeks en tijdstip gehaald worden waarop
                                 I_jacaffected van toepassing is
  OUTPUT
      x      : <vector> punt waarop de doelfunctie geevalueerd moet worden
      funpars: <cell array> met inhoud:
                W      : vector met waarnemingen
                stdW   : vector met waarnemingsfouten.
                         Let op!! de elementen f_3 zijn hierin al op nul gezet.
                NN_data: de neurale netwerk gegevens
                f_3    : indices van vrij te varieren waarden (lineaire index in W)==I_wederzijds
                f_4    : indices van door f_3 beinvloede waarden (lineaire index in W)
                E4tE3  : Het resultaat van een vermenigvuldiging van E4'*E3
                E4tE1W : Het resultaat van een vermenigvuldiging van E4'*E1*W
 
  OUTPUT:
   f:           <double> de doelfunctiewaarde, scalair
   g:           <vector> de gradient, length(x) lang
   H:           <matrix> de hessiaan (Jac'*Jac), length(x) bij length(x)

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

30-Sep-2005 17:56:56

Size:

6455 bytes

Calls functions:

ModelitUtilRoot>dprintf.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>CONHOP>SimulNN.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>dampnewton.m

(back to table of contents)
  dampnewton - Levenberg-Marquardt type damped Newton method for nonlinear
               optimization
 
  CALL:
   [running_time,x,f,g,H] = dampnewton(fun,par,x,options)
 
  INPUT:
   fun:     <function handle> moet gedefinieerd zijn als:
                              [f,g,H] = fun(x,par)
   par:     eventuele parameters voor fun, mag leeg zijn
   x0:      <vector> startpunt
   options: <struct> met de volgende velden:
            - mu            :   <double> startwaarde voor de Marquardt
                                parameter.
            - epsilon1      :   <double> ||g||_inf <= epsilon1
            - epsilon2      :   <double> ||dx||2 <= epsilon2*(epsilon2 + ||x||2)
            - maxiter       :   <int> maximum aantal iteraties
 
  OUTPUT:
   x:       <vector> optimale waarde voor de variabelen
   f:       <double> functiewaarde
   g:       <vector> gradient
   H:       <matrix> length(x) bij length(x) Hessiaan
 
  APPROACH:
   - Section 5.2 in  P.E. Frandsen, K. Jonasson, H.B. Nielsen,
     O. Tingleff:  "Unconstrained Optimization", IMM, DTU.  1999.
   - "damping parameter in marquardt's method"
     Hans Bruun Nielsen,  IMM, DTU.  99.08.10 / 08.12

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

13-Feb-2009 13:52:22

Size:

12476 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>CONHOP>dispdump.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>dispdump.m

(back to table of contents)
  dispdump - display meldingen en sla deze op voor rapportage
 
  CALL:
   strs = dispdump(strs,str)
 
  INPUT:
   strs:    <cellstr> met de reeds aanwezige meldingen
   str:     <string> met de toe te voegen melding
 
  OUTPUT:
   strs:    <cellstr> geupdated cellstring met meldingen
 

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

23-Dec-2004 04:56:58

Size:

368 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>matgetvar2.m

(back to table of contents)
  matgetvar2 - genereer de reeks(en) (W en stdW) voor een opgegeven locatie
               variabele veldapparaat tijdstip(verschuivingen) combinatie
               vanuit de matrix die gemaakt is met db2mat
 
  CALL:
   [W_sel,stdW_sel,index,stdW_seq,T1,T2] = matgetvar2(W,stdW,Wkey,WTkey,periodeIndex)
 
  INPUT:
   W:            <matrix> met meetdata
   stdW:         <matrix> met meetfouten
   Wkey:         <struct> bijbehorende sleutels (ZIE sleutel2struct) 
                 lengte is aantal benodigde reeksen, met velden:
                      - sLoccod: <string>
                      - sParcod: <string> 
                      - sVatcod: <string>
   WTkey:        <struct> sleutels van op te halen reeksen 
                 (ZIE parseNNInvoer) met velden
                      - sLoccod: char str 
                      - sParcod: char str 
                      - sVatcod: char str 
                      - tShift:  integer 
   periodeIndex: <vector> met de indices van de te berekenen periodes
 
  OUTPUT:
   W_sel:    <array> de waarden voor de loc var veldapp tijd combinatie
   stdW_sel: <array> de deviaties voor de loc var veldapp tijd combinatie
   index:    <int> de index van de dia die hoort bij de loc var veldapp
             tijd combinatie
   stdW_seq: <matrix> standaarddeviaties met de richtingen NIET ontbonden
   T1:       <struct> lineaire transformatiematrix 
   T2:       <struct> diagonale transformatie
 
  METHODE:
   als var == 'WINDRTG', 'Th0' of 'Th3' dan wordt var opgesplitst in een
   x- en y-richting
   Toegepaste transformaties:
   T1: blaas alle richting reeksen op tot 2 identieke exemplaren (lineaire transformatie)
   T2: laat reeksen ongemoeid of neem sinus en of cosinus (diagonale transformatie)

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

20-Mar-2007 21:35:30

Size:

5451 bytes

Calls functions:

ModelitUtilRoot>findstructure.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>selectPredictable.m

(back to table of contents)
  selectPredictable - filter IDsPredict van reeksen die mogen worden
                      bijgeschat
 
  CALL:
   [IDsPredict,report] = selectPredictable(db,NN_name,IDsPredict)
 
  INPUT:
   db:          <struct> de centrale database
   NN_name:     <string> naam van het struct array dat de NN herbergt
   IDsPredict:  <vector> indices van de te voorspellen reeksen
 
  OUTPUT:
   IDsPredict:  <vector> indices van de reeksen waarvoor geldt:
                    - Alleen reeksen waarvoor een NN aanwezig is worden
                      voorspeld
                    - Alleen Neurale netwerken waarvoor alle invoer reeksen 
                      aanwezig zijn mogen worden gebruikt. 
   report:      <string> bijdrage aan logboek
 
  See also: NN_depend

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

29-Nov-2006 11:12:02

Size:

3912 bytes

Calls functions:

ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>strcol.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>simstructnet2.m

(back to table of contents)
  simstructnet - simuleer met een netwerk in structuurformaat
 
  CALL:
   [result,T] = simstructnet2(netstruct,inputdata)
 
  INPUT:
   netstruct      - <struct> zie emptystruct('netwerk')
   inputdata(M,P) - <matrix> aantal inputs bij aantal beschikbare patronen
 
  OUTPUT:
   result(H,P) - <matrix> (aantal outputs maal aantal patronen) bij
                 aantal members
   T(MxH,P)    - <matrix> met invloed van invoer(I) op uitvoer(U)
                 (I1->U1,I2->U1,... I1->U2,I2->U2,...etc)
                 (doorgaans is er maar 1 output en geldt H==1)
 
  METHODE:
   deze functie is in principe gelijk aan sim van de neural network
   toolbox, met het verschil dat 
    1) alleen het resultaat van de simulatie wordt teruggegeven
    2) er gewerkt wordt met een structuur en niet met een netwerk object
       alle gegevens zijn te vinden in 
         netstruct.ensemble.member: met de bias en gewichten
         netstruct.netwerk:         met de netwerkstructuur: aantalneuronen 
                                    transferfuncties aantal lagen etc.
    3) deze routine werkt alleen voor feedforward netwerken
   

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

30-Oct-2006 12:58:28

Size:

12911 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>logsig.m
ApplicationRoot>WavixIV>neural501>purelin.m
ApplicationRoot>WavixIV>neural501>tansig.m
ModelitUtilRoot>dprintf.m
ApplicationRoot>wavixIV>CONHOP>ChainRule.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>wavixIV>CONHOP>start_conhop.m

(back to table of contents)
  start_conhop - GUI voor opstarten van conhop
 
  CALL:
   opt = start_conhop
 
  INPUT:
   geen invoer
 
  OUTPUT:
   opt:     <struct> met de opties voor het uitvoeren van de conhop
            schattingen: met velden
                - improveInit: initiele schatting m.b.v. neurale netwerken
                               toepassen
                - fastRepair: <0 of 1> iteratief bijschatten wederzijdse
                              hiaten
                - fastRepairVal: <int> aantal keer uitvoeren fastrepair
                - optim: <0 of 1> optimaliseren wederzijdse hiaten
                - dampnewton: <struct> met de opties voor de optimalisatie
                        - mu: <double> startwaarde voor de trustregion
                              parameter
                        - epsilon1: <double> convergentieparameter voor de
                                    gradient
                        - epsilon2: <double> convergentieparameter voor de
                                    stapgrootte
                        - maxiter: <int> maximum aantal iteraties
 
  See also: Estimate
 

Path:

ApplicationRoot\wavixIV\CONHOP

Last modified:

13-Feb-2009 13:52:52

Size:

13747 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m

(back to table of contents)
  RemoveDiablok - verwijder reeksen uit het werkgebied
  
  CALL:
   RemoveDiablok(rmvIDs,db,C,msg)
 
  INPUT:
   rmvIDs : <vector> met indices van de te verwijderen reeksen
   db:      <struct> de centrale database
   C:       <struct> met constantes
   msg:     <string> tekst voor het logboek
    
  OUTPUT:
   geen directe uitvoer, de database wordt aangepast
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

26-Oct-2006 18:59:56

Size:

1359 bytes

Calls functions:

ModelitUtilRoot>is_in.m
ModelitUtilRoot>matlabguru>store.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m

(back to table of contents)
  SelectLocation - gui voor het selecteren van een reeks als hoofdsensor
                   bij een andere locatie
 
  CALL:
   locindx = SelectLocation(C,loc,dia)
 
  INPUT:
   C:       <struct> met constantes
   loc:     <struct> het db.loc veld van de centrale database
   dia:     <struct> de reeks die gekoppeld moet worden aan een andere
            locatie
 
  OUTPUT:
   locindx: <int> index in het db.loc.sLoccod veld van de centrale
            database
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:43:22

Size:

4216 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m

(back to table of contents)
  WavixDia2Blok - converteer Wavix element "dia" naar Donar "blok" element
  
  CALL:
   blok = WavixDia2Blok(dia)
 
  INPUT:
   dia: <struct array> met dia's
  
  OUTPUT:
   blok: <struct> van blokken die in een dia kunnen worden weggeschreven
 
  METHODE
   Deze functie wordt aangeroepen in de volgende situaties:
   - wanneer twee Dia's worden samengevoegd. De wavix datastructuur
     wordt dan tijdelijk omgezet in een Donar structuur. Hierdoor wordt
     het mogelijk om de algemene utility "dia_merge" te benutten.
     (procedure do_import_dia.m)
   - wanneer een reeks wordt geconverteerd. Dit gebeurt door de een
     nieuwe reeks aan te maken en te importeren met do_import_dia
   - alle overige plaatsen waar do_import_dia vanuit Wavix wordt
     aangeroepen.

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

28-Jan-2007 22:49:42

Size:

1252 bytes

Calls functions:

ModelitUtilRoot>diaroutines>emptyWRD.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2donstat.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m

(back to table of contents)
  check_Hm0 - voer een consistentie check uit: vergelijk hiaten in reeks
              met hiaten in corresponderende Hm0 reeksen
  
  CALL:
   [warnmsg,db] = check_Hm0(db)
 
  INPUT:
   db:      <undoredo object> de centrale database
 
  OUTPUT:
   warnmsg: <string> met een eventuele waarschuwing, '' als alles ok
   db:      <struct> de centrale database waarin de reeksen met hiaten
            in de corresponderende Hm0 reeks op hiaat gezet zijn

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:46:54

Size:

3266 bytes

Calls functions:

ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m

(back to table of contents)
  check_Hm0_1 - hiaatstatus aanpassen voor 1 reeks
  
  CALL:
   [db, reportstr, missingHm0] = check_Hm0_1(db, C, indx, W3Hs, msg)
   
  INPUT:
   db: undoredo object met de centrale Wavix database
   C: structure met constantes
   indx: index van de te controleren dia
   W3Hs: struct array met alle W3H blokken uit het wgb
   msg: string voor item in undoredo lijst
  
  OUTPUT:
   db: undoredo object met de centrale Wavix database
   reportstr: string met eventuele waarschuwingen over ontbreken Hm0 of
              aantal hiaten in Hm0
   missingHm0: string met stations waarvoor Hm0 mist

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

18-Oct-2007 18:44:40

Size:

3241 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>findstructure.m
ApplicationRoot>wavixIV>DATABEHEER>set_hiaat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m

(back to table of contents)
  cmp_stdafw - bereken de standaardafwijking van alle reeksen in het
               werkgebied
 
  CALL:
   [msg,db] = cmp_stdafw(db)
 
  INPUT:
   db:  <struct> de centrale database
 
  OUTPUT:
   msg  <string> 
   db:  <struct> de centrale database met het veld stdV gevuld voor alle
        aanwezige reeksen
 
  See also: ComputeStd

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:48:52

Size:

1077 bytes

Calls functions:

ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)
  databeheer - installeer de databeheer GUI
  
  CALL:
   databeheer(obj,event)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol, (wordt niet gebruikt)
   event: leeg, standaard argument van een callback (wordt niet gebruikt)
  
  OUTPUT:
   geen directe uitvoer, het databeheer scherm wordt geopend
      
  APPROACH:
   Deze functie kijkt of het databeheer scherm al is geinstalleerd en
   maakt het in dat geval current. 
   Zo niet, dan wordt het databeheer scherm geinitialiseerd.
   Deze functie module bevat alle define- functies waarmee het scherm
   wordt opgebouwd, en de meeste van de callback functies die vanuit het
   scherm kunnen worden aangeroepen.  
 
  See also: dbhview

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 13:08:58

Size:

34920 bytes

Calls functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_exitbutton.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>centralpos.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>shiftup.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ModelitUtilRoot>writestr.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>extend_time.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m
ApplicationRoot>wavixIV>DATABEHEER>listRKS.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>fieldnameprint.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m

(back to table of contents)
  databeheerview - view functie voor het databeheer scherm
 
  CALL:
   databeheerview(udnew,opt,upd,C,HWIN)
 
  INPUT:
   udnew: <struct> de centrale database
   opt:   <struct> GUI settings voor databeheer
   upd:   <struct> de te updaten scherm elementen
   C:     <struct> de wavix constantes
   HWIN:  <handle> van het databeheer scherm
 
  OUTPUT:
   geen directe output, het databeheer scherm is geupdate
 
  See also:
   databeheer  
   data2dbh           - definieer afhankelijkheid databeheer scherm 
                        van data 
   settings2dbh       - definieer afhankelijkheid databeheer scherm 
                        van settings (opties)

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:48:32

Size:

7143 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>diaroutines>ComposeDiaList.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>offon.m
ApplicationRoot>wavixIV>HULPFUNCTIES>fieldnameprint.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)
  dealwithdiablok - verwijder, selecteer of deselecteer gemarkeerde reeksen
 
  CALL:
   dealwithdiablok(obj,event,hlist,optie)
 
  INPUT:
   obj:     <handle> van de 'calling' uicontrol
   event:   leeg, standaard argument van een callback
   hlist:   <handle> van listbox
   optie:   <string> uit te voeren actie 
                - savedia, opslaan geselecteerd reeks(en)
                - O, zet status geselecteerd reeks(en) op Ongecontroleerd
                - G, zet status geselecteerd reeks(en) op Goedgekeurd
                - D, zet status geselecteerd reeks(en) op Definitief
                - delete, wis geselecteerde reeks(en)
                - hoofd, wijs geselecteerde reeks aan als hoofdsensor
                - hoofdspecial, wijs geselecteerde reeks aan als
                                hoofdsensor bij andere locatie
                - neven, schrap de geselecteerde reeksen als hoofdsensor
                - TE3_2_HTE3, converteer TE3/2 naar HTE3 als mogelijk
                - HTE3_2_TE3, converteer HTE3/2 naar TE3 als mogelijk
                - exportascii, exporteer geselecteerde reeksen naar kaal
                               ascii bestand
 
  OUTPUT:
   geen directe uitvoer
 
  METHODE:
   Wordt aangeroepen uit contextmenu van lijst of button
    Conventie 1: de lijst "listobj" heeft als userdata de reeks ID's
    Conventie 2: de gemarkeerde items in lijst "listobj" dienen gewijzigd 
                 te worden

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:38:08

Size:

9593 bytes

Calls functions:

ModelitUtilRoot>diaroutines>emptydia.m
ModelitUtilRoot>diaroutines>writedia_R14.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m
ApplicationRoot>wavixIV>DATABEHEER>SelectLocation.m
ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>getwgbname.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m

(back to table of contents)
  defaultconfig - selecteer reeksen als hoofdsensoren
 
  CALL:
   [db,reportstr] = defaultconfig(db,C,mode,dia,WavixLoc)
 
  INPUT:
   db:       <struct> de centrale database
   C:        <struct> met constantes
   actie:    <string> uit te voeren actie:
                     - remove:   verwijder de locaties uit array dia uit
                                 locatietabel
                     - add:      voeg de locaties uit array dia toe aan de
                                 locatietabel
                     - addascii: voeg de locaties uit array dia toe aan de
                                 locatietabel voor zover deze locaties
                                 voorkomen in een stuurfile
   dia:       <structarray> met dia's
   WavixLoc:  <structarray> (optioneel) die correspondeert met dia. Bevat 
              het veld wavixloc: wavix locatie waarvoor de reeks geldt
 
  OUTPUT:
   db:        <struct> de centrale database met aangepaste velden:
                - db.loc.ID: identifier
                - db.loc.ID: sLoccod: naam van deze locatie
                - db.loc.(H1_3/Hm0/TE3/TH1_3/Th0/Tm02): ID van reeks
                  die als hoofdsensor fungeert
   reportstr: <string> weg te schrijven logboek aantekeningen
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

29-Jul-2008 21:57:18

Size:

25078 bytes

Calls functions:

ModelitUtilRoot>decomment_line.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>findstructure.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>readstr.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m
ApplicationRoot>wavixIV>HULPFUNCTIES>fieldnameprint.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m

(back to table of contents)
  do_import_conversie_network - importeer netwerken voor het bijschatten
                                van hoofdsensoren m.b.v. de nevensensoren
                                naar het werkgebied
  
  CALL:
    u = do_import_conversie_network(C,fname,NetworkArray,u)
    
  INPUT:
   C:              <struct> met de wavix constantes
   fname:          <string> met de naam van het te importeren bestand
   NetworkArray:   <array of struct> van netwerken zie
                   emptystruct('netwerk')
   u:              <struct> de centrale database
 
  OUTPUT:
   u:              <struct> de centrale database met de lijst met conversie
                   netwerken aangepast,
                   N.B. deze netwerken zijn in tegenstelling tot de
                   netwerken die geimporteerd zijn met do_import_network
                   niet te zijn in de netwerkenlijst in het netwerkbeheer
                   scherm
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

01-Oct-2007 10:12:02

Size:

2364 bytes

Calls functions:

ModelitUtilRoot>jacontrol>isopen.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m

(back to table of contents)
   do_import_dia - voer de import actie voor een dia uit
  
  CALL:
   db = do_import_dia(C,fname,blok,db)
    
  INPUT:
   C:      <struct> met wavix constantes
   fname:  <string> met de bestandsnaam van de te importeren dia
   blok:   <struct array> (optioneel) met dia blokken met velden:
                  W3H
                  MUX
                  TYP
                  RKS
                  TPS
                  WRD <=== Volgens DONAR datastructuur
   db:     <struct> de centrale database
   h_wait: <jacontrol object> (optioneel) type jprogressbar voor weergave 
                              voortgang, default wordt er een multiwaitbar
                              aangemaakt
   do_interp: <boolean> (optioneel) true -> interpoleer blok naar tijdsas  
                                    en complementeer wind en waterhoogte 
    
  OUTPUT:
   db:    <struct> de bijgewerkte centrale database met de nieuwe reeks(en)
  
  See also: databeheer, load_wavixascii

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 11:18:52

Size:

11037 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>datenum2long.m
ModelitUtilRoot>diaroutines>dia_merge.m
ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>interp_blok.m
ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>findstructure.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m
ApplicationRoot>wavixIV>HULPFUNCTIES>donstat2binstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>exportascii.m

(back to table of contents)
  exportascii - GUI voor het exporteren van reeksen in kaal ascii formaat 
 
  CALL:
   exportascii(C,db,indx)
 
  INPUT:
   C:    <struct> met constantes
   db:   <struct> de centrale database
   indx: <vector> indices van de te exporteren reeksen
  
  OUTPUT:
   geen directe uitvoer, de data zijn weggeschreven naar een ascii-bestand
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

13-Feb-2009 13:53:04

Size:

17738 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>diaroutines>datenum2long.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>real2str.m
ModelitUtilRoot>writestr.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>extend_time.m

(back to table of contents)
  extend_time - breid tijdsinterval van de reeksen in de database uit
 
  CALL:
   db = extend_time(db,indx,M)
 
  INPUT:
   db:   <struct> de centrale database
   indx: <vector> met indices van reeksen 
         (correspondeert met kolom index in M)
   M :   <struct> de database in matrixvorm (zie db2mat)
 
  OUTPUT:
   db:   <struct> de centrale database met de volgende bijgewerkte velden:
            - db.dia.W1
            - db.dia.stdW
            - db.dia.V
            - db.dia.stdV
            - db.dia.status
            - RKS
            - TPS
 
  See also: set_hiaat, limit_time

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

24-Sep-2007 20:26:18

Size:

1552 bytes

Calls functions:

ModelitUtilRoot>diaroutines>set_taxis.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>limit_time.m

(back to table of contents)
  limit_time - perk tijdinterval van reeksen in database in
 
  CALL:
   [db, reportstr] = limit_time(db, C, indx, taxis)
 
  INPUT:
   db:    <struct> de centrale database
   C:     <struct> met wavixconstanten
   indx:  <vector> met indices van reeksen 
   taxis: <array of datenum> van geselecteerde tijdsas
 
  OUTPUT:
   db:   <struct> de centrale database met de volgende bijgewerkte velden:
            - db.dia.W1
            - db.dia.stdW
            - db.dia.V
            - db.dia.stdV
            - db.dia.status
            - RKS
            - TPS
   reportstr:   <string> commentaar voor het logboek
  
  See also:  set_hiaat, extend_time

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

24-Sep-2007 20:27:38

Size:

2599 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>diaroutines>set_taxis.m
ModelitUtilRoot>is_in.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>HULPFUNCTIES>reeksaanduiding.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>listRKS.m

(back to table of contents)
  listRKS - vul een struct array van RKS structures op basis
            van een WAVIX dia array
  
  CALL:
   RKSs = listRKS(dia,indices)
 
  INPUT:
   dia:     <struct array> met dia's (zie emptystruct('dia'))
   indices: <vector> (optioneel) te gebruiken indices (default: alle)
 
  OUTPUT:
   RKSs:    <struct array> van het RKS gedeelte van een dia
  
  ZIE OOK:
   listW3H

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

23-Dec-2004 08:57:06

Size:

722 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>select_interval.m

(back to table of contents)
  select_interval - gui voor het selecteren van een tijdsinterval voor het
                    uitbreiden of inperken van het tijdsinterval van het
                    werkgebied
 
  CALL:
   [begintijd,eindtijd,uitbreiden] = select_interval(begintijd,eindtijd)
 
  INPUT:
   begintijd:       <datenum> originele begintijd, wordt getoond in gui
   eindtijd:        <datenum> originele eindtijd, wordt getoond in gui
 
  OUTPUT:
   begintijd:       <datenum> nieuwe begintijd
   eindtijd:        <datenum> nieuwe eindtijd
   uitbreiden:      <int> uitkomst van checkbox uitbreiden dias tot
                    compleet interval, mogelijke waarden:
                                         - 0, inperken studieperiode
                                         - 1, uitbreiden studieperiode
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:39:56

Size:

6575 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_pixelsize.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>mbdparsevalue.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>set_hiaat.m

(back to table of contents)
  set_hiaat - markeer geselecteerde punten als hiaat
  
  CALL:
   db = set_hiaat(optie,db,indx,f_hiaat,msg)
 
  INPUT:
   optie:   <string> bij te werken veld:
              W: waarde veld
              V: voorspelling (nog niet in gebruik)
   db:      <struct> de centrale database
   indx:    <vector> van indices in WGB dia lijst
   f_hiaat: <vector> indices van de te markeren hiaten
   msg:     <string> message voor undo lijstweergave
 
  OUTPUT:
   db:  <undoredo object> met de centrale database met de hiaten
 

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

18-Oct-2007 18:44:22

Size:

1354 bytes

Calls functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m

(back to table of contents)

ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m

(back to table of contents)
  updatetoestand - voer automatische acties uit als een toestandsovergang
                   plaatsvindt
 
  CALL:
   [db,msg] = updatetoestand(db,knop_main,knop_sub)
 
  INPUT:
   db:          <struct> de centrale database
   knop_main:   <string> de toestand waartoe de geselecteerde button
                behoort
   knop_sub:    <string> de subtoestand waartoe de geselecteerde button
                behoort
 
  OUTPUT:
   db:          <struct> de updated centrale database
   msg:         <string> eventuele foutmelding

Path:

ApplicationRoot\wavixIV\DATABEHEER

Last modified:

15-Oct-2008 12:46:32

Size:

13260 bytes

Calls functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m

(back to table of contents)
  Estimate - schat de reeksen van de hoofdsensoren
 
  CALL:
   Estimate(obj, event, mode, opt)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol, (wordt niet gebruikt)
   event: leeg, standaard argument van een callback (wordt niet gebruikt)
   mode:  <string> met de uit te voeren actie:
                   - 'Init', maak schattingen voor alle hiaatwaarden m.b.v.
                     neurale netwerken
                   - 'Neven', schat de reeksen van de hoofdsensoren bij
                     m.b.v de conversie netwerken
                   - 'All', schat alle reeksen van de hoofdsensoren bij
                     m.b.v. neurale netwerken
                   - 'Conhop', Optimaliseer wederzijdse hiaten
                   - 'selectie', schat enkele reeksen van de hoofdsensoren
                     bij m.b.v. neurale netwerken
   opt:   <struct> meegegeven opties vanuit start_conhop
 
  OUTPUT:
   geen directe uitvoer, de schattingen worden opgeslagen in de centrale
   database, en zichtbaar gemaakt in de grafieken in het Wavix hoofdscherm
 
  See also: start_conhop

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

10-Mar-2009 19:25:34

Size:

3852 bytes

Calls functions:

ModelitUtilRoot>gcjh.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>store.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m

(back to table of contents)
  GetColSpecsDefinition - bouw sleutels voor het selecteren van de kolommen                                    
                                                                                                                
  CALL:                                                                                                         
    [ColSpecHoofd,ColSpecNeven,groot2klein,Parameters] = GetColSpecsDefinition                                    
                                                                                                                
  INPUT:                                                                                                        
   geen invoer                                                                                                       
                                                                                                                
  OUTPUT:
   ColSpecHoofd: <array of struct> waarvan de lengte overeenkomt
                 met het aantal WAVIX kolommen -1. Dit array bevat de
                 sleutels en conversie instructies voor de WAVIX tabel
                 met HOOFDsensoren.                                                       
                 De structures van dit array hebben de volgende velden:                                      
   sLoccod:      <cell array> met primaire, secundaire, etc sleutel voor                 
                 locatie voor andere kolommen dan die voor windgegevens is
                 momenteel alleen de primaire sleutel bepaald. Er zijn
                 maximaal 6 sleutels. De sleutel 'NB' wordt in dia2wavix
                 als speciale waarde behandeld.                 
  sParcod:       <string> met de sleutel voor parameter type.                                
  sVatcod:       <cell array> met primaire, secundaire, etc sleutel voor
                 detectortype voor andere kolommen dan die voor
                 windgegevens is momenteel alleen de primaire sleutel
                 bepaald. Er zijn maximaal 6 sleutels. De sleutel 'NB'
                 wordt in dia2wavix als speciale waarde behandeld. 
                 De lengte van dit cell array moet overeenkomen met het
                 aantal sleutels voor locaties.                                                                    
                 verplicht: code voor het type waarschuwing bij een niet
                            gevonden blok                      
                 factor: Ophoogfactor voor Dia2Wavix (bijvoorbeeld voor het
                         geval dat DONAR een andere eenheid gebruikt dan
                         WAVIX)                                                        
  verschil:      Vaste ophoging                                                                   
  bewerking:     Veld dat een bepaalde bewerking karakteriseert.
                 Momenteel zijn de volgende bewerkingen ondersteund:                                                        
                    1 ===> Conversie van TE3 naar TE10 (4*sqrt)                                      
                    2 ===> Bijgissen van hiaten door middel van lineaire
                           interpolatie               
  ColSpecNeven:  <array of struct> waarvan de lengte overeenkomt met het                       
                 aantal WAVIX kolommen -1. Dit array bevat de sleutels en
                 conversie instructies voor de WAVIX tabel met
                 NEVENsensoren.                                                                                                                                                     
  groot2klein:   Een lijst corresponderend met de lijst van 
                 parametersoorten, met voor elke parameter de locatie van
                 de WAVIX kolom voor deze parameter in de repeterende
                 blokken van de WAVIX tabel 
  Parameters:    <struct> met dias met voor elke parameter een blok dat de
                 Metagegevens bevat. De blokken staan in de structure in
                 dezelfde volgorde als dat ze voorkomen in de WAVIX tabel.                    
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

27-Dec-2004 11:45:52

Size:

17315 bytes

Calls functions:

ModelitUtilRoot>diaroutines>readdia_R14.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>row_is_in.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m

(back to table of contents)
  do_apply - voer bewerkingen uit op de geselecteerde periodes
  
  CALL:
   function do_apply(obj,event,mode)
  
  INPUT:
   obj:     <handle> van de 'calling' uicontrol
   event:   leeg, standaard argument van een callback
   mode:    <string> bewerking
                        - ok:       keur de huidige waarde voor de 
                                    geselecteerde periode goed
                        - estimate: pas geschatte waarde voor geselecteerde
                                    periodes toe
                        - hiaat:    zet de geselecteerde periode op hiaat
 
  OUTPUT:
   geen directe uitvoer, de centrale database is aangepast
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

02-Nov-2007 16:40:24

Size:

8581 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>msg_temp.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>reeksaanduiding.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m

(back to table of contents)
  emptyu - initialiseer undoredo object voor wavix
  
  CALL:
   [db,filename] = emptyu(C,filename,signature)
    
  INPUT:
   C:         <struct> met constantes voor de stormnet applicatie
   filename:  <string> met de naam van het te openen bestand
   signature: <double> (optioneel) met signaturen van het undoredo object
  
  OUTPUT:
   db:       <undoredo object> met een 'leeg' werkgebied.
   filename: <string> met de bestandsnaam van het werkgebied
   
  See also: emptystruct, emptyud

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

16-Oct-2008 16:19:04

Size:

5833 bytes

Calls functions:

ApplicationRoot>WavixIV>wavixshowdata.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>defaultpath.m
ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>emptyW3H.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>mbd_restore.m
ModelitUtilRoot>mbd_suspend.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyud.m
ApplicationRoot>wavixIV>HOOFDSCHERM>setwgbname.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyud.m

(back to table of contents)
  emptyud - maak een lege userdata structure aan
  
  CALL:
   ud = emptyud(stamp)
    
  INPUT:
   stamp: <datenum> initiele tijd stempel voor het veld timeofchange
          TIP: laat dit veld overeen komen met het veld 'timeofcommit' in
               een overkoepelende structure
  
  OUTPUT:
   ud:    <struct> een 'lege' userdata structure. 
 
  APPROACH:
    Deze functie komt in de plaats van een klassieke declaratie en maakt het
    mogelijk om:
    1. structures the rangschikken in een array 
    2. te testen op bepaalde veldwaardes, zonder een dergelijke test vooraf
       te laden gaan door een test met 'isfield'
       
  See also: emptyu, emptystruct

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

05-Dec-2006 01:21:24

Size:

1129 bytes

Calls functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>getwgbname.m

(back to table of contents)
  getwgbname - retourneer naam van werkgebied
  
  CALL:
   [filename,stamnaam] = getwgbname
 
  INPUT:
   geen invoer
      
  OUTPUT:
   filename: <string> volledige filenaam met pad
                      bv: 'C:\d\modelit\wavixIV\Untitled.wv4'
   stamnaam: <string> filenaam zonder pad en extensie
                      bv: 'Untitled'
  
  See also: setwgbname

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

19-Oct-2006 20:16:22

Size:

533 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>linepatch.m

(back to table of contents)

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

28-Nov-2008 11:17:09

Size:

1626 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>linestyle_wavix.m

(back to table of contents)
  linestyle - properties voor lijnen binnen wavix
 
  CALL:
   lstyle = linestyle_wavix
 
  INPUT:
   geen invoer
 
  OUTPUT:
   lstyle:  <struct> met lstyle.<linetype>: de properties van de lijn
 
  VOORBEELD:
   h = line(lstyle.hiaat); %initialiseer lijn
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

20-Mar-2007 13:35:20

Size:

5254 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m

(back to table of contents)
  load_data - callback van menu 'laad werkgebied', user interface voor het
              laden van een eerder bewaard werkgebied
 
  CALL:
   dummy = load_data(obj,event,fname)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol
   event: leeg, standaard argument van een callback
   fname: <string> naam van te laden file
 
  OUTPUT:
   geen directe uitvoer, userdata van de centrale database wordt aangepast 
 
  METHODE:
   - Kijk of oude data bewaard moeten blijven (wav_check_exit)                          
   - Haal de naam van de invoerfile op (getfile)                                    
   - Schakel interactie uit (mbd_suspend)                                           
   - Laad data                                                                      
   - Schakel interactie in (mbd_restore)                                            
   - Verwijder introtext                                         
   - Schakel menu's in die van data afhangen (activatemenus)                        
   - Schakel de save menus uit (heractiveer ze bij de volgende aanroep van
                                wav_check_exit)
   - Pas de naam van het window aan                                                 
   - Update scherm (update)   
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

15-Oct-2008 12:52:28

Size:

2223 bytes

Calls functions:

ModelitUtilRoot>extensie.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m

(back to table of contents)
  load_wavixascii - callback van menu 'importeren', User interface
                    voor het laden van wavix2000 ascii bestanden
 
  CALL:
   dummy = load_wavixascii(obj,event,Sensortype,fname)
 
  INPUT:
   obj:         <handle> van de 'calling' uicontrol
   event:       leeg, standaard argument van een callback
   Sensortype:  <string> met mogelijke waarden
                    'hoofd'
                    'neven'
   fname:       <string> naam van het te laden bestand
 
  OUTPUT:
       geen  
       De property 'userdata' wordt aangepast: 
 
  METHODE:
   - Kijk of oude data bewaard moeten blijven (morf_check_exit)                          
   - Haal de naam van de invoerfile op (getfile)                                    
   - Schakel interactie uit (mbd_suspend)                                           
   - Laad data                                                                      
   - Schakel interactie in (mbd_restore)                                            
   - Verwijder introtext (digivalwinresize)                                         
   - Schakel menu's in die van data afhangen (activatemenus)                        
   - Schakel de save menus uit (de volgende aanroep van morf_check_exit
     activeert ze weer
   - Pas de naam van het window aan                                                 
   - Update scherm (update)   

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

15-Aug-2008 13:15:42

Size:

15401 bytes

Calls functions:

ModelitUtilRoot>diaroutines>defaultdia.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>extensie.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>matlabguru>store.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>GetColSpecsDefinition.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m

(back to table of contents)
  save_data - callback van menu 'bewaar werkgebied'
              User interface voor het bewaren van een werkgebied
 
  CALL:
   save_data(obj,event,fname)
 
  INPUT:
   obj:     <handle> van de 'calling' uicontrol
   event:   leeg, standaard argument van een callback
   fname:   <string> (optioneel) naam van het te bewaren bestand
            ongedefinieerd (nargin=2) ==> vraag gebruiker om filenaam
            string                    ==> gebruik deze naam
            empty string ''           ==> gebruik werkgebied naam (tenzij
                                           nog niet gekozen)
         
 
  OUTPUT:
   saved:   <int> met mogelijke waarden:
                  - 1 als daadwerkelijk gesaved
                  - 0 als cancel ingedrukt
 
  METHODE:
   - Haal constantes en userdata op                                      
   - Bepaal de filenaam van de te bewaren data                           
   - Schakel GUI tijdelijk uit (mbd_suspend)                             
   - Bewaar data                                                         
   - Activeer GUI (mbd_restore)                                          
   - Deactiveer save buttons                                            
     Deze worden bij de eerste wijziging weer door check_exit geactiveerd

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

15-Oct-2008 12:51:32

Size:

2937 bytes

Calls functions:

ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbd_restore.m
ModelitUtilRoot>mbd_suspend.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HOOFDSCHERM>getwgbname.m
ApplicationRoot>wavixIV>HOOFDSCHERM>setwgbname.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m

(back to table of contents)
  selectinterval - selecteer meerdere periodes 
 
  CALL:
   selectinterval(obj,event,mode,L,x1,x2,y1,y2)  
 
  INPUT:
   obj:     <handle> van de 'calling' uicontrol
   event:   leeg, standaard argument van een callback
   mode:    <string> meegegeven vlag bij aanroep
            leftclick: met linkermuis in grafiek geklikt
            range:     met de linkermuis is op de rubberband geklikt
            next:      een actie is uitgevoerd op het huidige geselecteerde
                       tijdstip en er moet verschoven worden naar de
                       volgende periode
   L:       <int> locatieindex (locatienaam == db.loc(L).sLoccod)
   x1:      <datenum> begintijd selectie periode (optioneel)
   x2:      <datenum> eindtijd selectie periode (optioneel)
   y1:      ongebruikt
   y2:      ongebruikt
 
  OUTPUT:
   1 of meer periodes zijn geselecteerd
  
  METHODE:
   Het gedrag van de functie hangt af van de manier van aanroepen.
                                                                  
   Als met 1 argument aangeroepen                                
     Aangeroepen als callback van lijst met alfanumerieke data.     
     x1 bevat een lijst met periode indices.                        
     Teken de bijbehorende cirkels.                                 
                                                                  
   Als met 2 argumenten aangeroepen (via zoomtool):                              
     x1 = begin selectie periode                                  
     x2 = eind selectie periode                                   
                                                                  
     Bepaal alle tussenliggende, te selecteren periodes.            
     Gebruik de functie FIND_SELECTABLE om na te gaan welke periodes
     in aanmerking komen.                                           
     Teken cirkels.                                                 
     Selecteer Rijen uit lijst met alfanumerieke data.    
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

05-Dec-2006 02:58:04

Size:

6311 bytes

Calls functions:

ModelitUtilRoot>eprintf.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m

(back to table of contents)
  set_meetbereik - gui voor het aanpassen van het meetbereik van de reeksen
                   in Wavix
 
  CALL:
   set_meetbereik(obj, event)
 
  INPUT:
   obj:   <handle> van de aanroepende uicontrol
   event: <leeg> standaard matlab callback argument
  
  OUTPUT:
   geen uitvoer, de settings van het hoofdscherm zijn aangepast, in het
   veld DefineRange zijn de nieuwe bereiken van de meetreeksen opgeslagen

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

13-Feb-2009 13:53:16

Size:

8610 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>htmlWindow.m
ModelitUtilRoot>javahandle.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undomenu.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m

(back to table of contents)
  set_werkgebied - gui voor het aanpassen van de tijdstap in Wavix
 
  CALL:
   set_werkgebied(obj, event)
 
  INPUT:
   obj:   <handle> van de aanroepende uicontrol
   event: <leeg> standaard matlab callback argument
  
  OUTPUT:
   geen uitvoer, een bestand met de naam wavix.opt wordt weggeschreven
   daarin staat in de variabele 'tijdstap' de tijdstap (10 of 60 minuten)
   aangegeven

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

13-Feb-2009 13:53:24

Size:

6712 bytes

Calls functions:

ApplicationRoot>WavixIV>wavix.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>setwgbname.m

(back to table of contents)
  setwgbname - wijzig naam van werkgebied
 
  CALL:
   setwgbname(filename,extra)
 
  INPUT:
   filename: <string> te gebruiken in titel van hoofdscherm en om op
                      te slaan
   extra:    <string> extensie voor de bestandsnaam
 
  OUTPUT:
   geen uitvoer
  
  See also: getwgbname

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

19-Oct-2006 20:16:18

Size:

509 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m

(back to table of contents)
  statreport - genereer een rapport
               met statistieken per reeks geaggregeerd op globaal, locatie,
               parameter en reeksniveau
 
  CALL:
   stats = statreport(obj, event)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol
   event: leeg, standaard argument van een callback
 
  OUTPUT:
   stats: <matrix> met de gegenereerde statistieken
  
  APPROACH:
   Een rapport wordt gegenereerd op de console en
   genoteerd in het logboek
 
  See also:  

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

28-Oct-2007 16:59:30

Size:

8311 bytes

Calls functions:

ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)
  undotoolbar - creeer standaard buttons voor toolbars in Wavix applicatie
  
  CALL:
   undotoolbar(C,present)
 
  INPUT:
   C:       <struct> de wavix constantes
   present: <vector> van lengte 8 met vlaggen voor het wel/niet opnemen van
            de volgende buttons:
              present(1): naar hoofdscherm
              present(2): naar databeheer
              present(3): naar netwerkbeheer
              present(4): naar regressiebeheer
              present(5): presenteren logboek
              present(6): presenteren statistieken
              present(7): help
              present(8): reset redo/undo history
  
  OUTPUT:
   geen directe output, buttons worden aangemaakt in de toolbars,
   wordt gebruikt in o.a. hoofdscherm, regressiebeheer, databeheer en
   netwerkbeheer.

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

30-Oct-2006 11:29:10

Size:

3555 bytes

Calls functions:

ModelitUtilRoot>getcdata.m
ModelitUtilRoot>matlabguru>undomenu.m
ModelitUtilRoot>transact_gui.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>view_help.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m

(back to table of contents)
  wav_check_exit - check of alle data bewaard zijn
  
  CALL:
   status = wav_check_exit
 
  INPUT
   geen invoer
  
  OUTPUT
  	status == 0  ==> er waren geen onbewaarde data
  	status == 1  ==> er waren onbewaarde data, deze zijn bewaard
  	status == 2  ==> er waren onbewaarde data, deze zijn niet bewaard
  	status == -1 ==> er waren onbewaarde data, de gebruiker heeft 
                     CANCEL ingedrukt
 
  METHODE:
   Check de status van het menu "save data"  
   Deze functie wordt aangeroepen iedere keer nadat iets in 
   de dataset wordt gewijzigd.

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

19-Oct-2006 20:17:48

Size:

1060 bytes

Calls functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>getwgbname.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)
  wavixmain - hoofdprogramma van de wavixIV applicatie, 
          installeert het wavix scherm
  
  CALL:
   wavixmain
 
  INPUT:
   geen invoer
  
  OUTPUT:
   geen directe uitvoer, het wavix scherm wordt geopend 
 
  See also: wavix, wavixview

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

13-Feb-2009 13:53:34

Size:

55433 bytes

Calls functions:

ApplicationRoot>WavixIV>wavix.m
ApplicationRoot>WavixIV>wavixshowopts.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_doubleframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_initaxes.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkslider2frame.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>copystructure.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>getfile.m
ModelitUtilRoot>installjar.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>javahandle.m
ModelitUtilRoot>loadnnpackage.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>print2file.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>table>tableRead.m
ModelitUtilRoot>table>tableheight.m
ModelitUtilRoot>writestr.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>HOOFDSCHERM>linestyle_wavix.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m

Is called by functions:

ApplicationRoot>WavixIV>wavix.m

(back to table of contents)

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)
  wavixview - view functie voor het wavix hoofdscherm
 
  CALL:
   wavixview(udnew,opt,upd)
 
  INPUT:
   udnew: <struct> de centrale database
   opt:   <struct> GUI settings voor wavix
   upd:   <struct> de te updaten scherm elementen
 
  OUTPUT:
   geen directe output, het wavix hoofdscherm is geupdate
 

Path:

ApplicationRoot\wavixIV\HOOFDSCHERM

Last modified:

15-Oct-2008 12:36:18

Size:

57068 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_deleteframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>fr_title.m
ModelitUtilRoot>RWSnat>CrdCnv.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>date_ax.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>is_in_eq.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>rbline.m
ModelitUtilRoot>rbline2.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HOOFDSCHERM>linepatch.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2type.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>ComposeNetworkList.m

(back to table of contents)
  ComposeNetworkList -

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

30-Sep-2007 22:31:36

Size:

1957 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m

(back to table of contents)
  ComputeStd - bereken the meetfout van de reeks in de dia
 
  CALL:
   sigma = ComputeStd(db,dia)
 
  INPUT:
   db:     <struct> de centrale database met relevante velden:
            - db.dia
            - db.loc
   dia:    <struct> met de dia waarvoor de meetfout moet worden bepaald
  
  OUTPUT:
   sigma:  de meetfout in de reeks
           sigma = NaN als niet alle data voor het berekenen van de 
           meetfout aanwezig zijn in de database
 
  DOCUMENTATION: vuistregels nauwkeurigheid golparameters Bram Roskam juni
                 2007, zie helpcenter
                 De nauwkeurigheid voor de windrichtingsklassen wordt gezet
                 op 30 als 
                         - richting(in graden) gelijk is aan 0 (windstilte)
                           (richting 0 wordt weergegeven als 360 !)
                         - richting(in graden) gelijk is aan 990
                           (veranderlijke wind)
                       

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

25-Jul-2007 14:13:10

Size:

7856 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>findstructure.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>cmp_stdafw.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m

(back to table of contents)
  DisplayNet - display network characteristics
  
  CALL:
   string = DisplayNet(netwerk_lijst)
  
  INPUT:
   netwerk_lijst:
  
  OUTPUT:
   string:
  
  See also: invoer2string, uitvoer2string, stormtijden2string

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 21:58:22

Size:

1837 bytes

Calls functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>invoer2string.m
ApplicationRoot>wavixIV>HULPFUNCTIES>uitvoer2string.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2donstat.m

(back to table of contents)
  binstatus2donstat - transformeer Wavix binaire status naar Donar codering
 
  CALL:
   donstat = binstatus2donstat(status)
 
  INPUT:
   status: <vector of uint8> binnen wavix gebruikte geaggregeerde binaire
           status met:
                 		bit 1: Hiaat        	 
                        bit 2: Controle         
                 		bit 3: Outlier	        
                 		bit 4: Validatie status	
                 		bit 5: Herkomst	        
  
  OUTPUT:
   donstat: <vector of uint8> Donar status, mogelijke waarden
                        0 : gewone waarneming
                        25: geinterpoleerde waarde
                        99: hiaat
 
  ZIE OOK:
   donstat2binstatus
   setbinstatus
   getbinstatus
   binstatus2type

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 17:42:04

Size:

1075 bytes

Calls functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>WavixDia2Blok.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2type.m

(back to table of contents)
  binstatus2type - haal statusbits op voor alle statustypes uit de
                   geaggregeerde status
  CALL:
   [statustype,bvalide,bherkomst,aggregstatus] = binstatus2type(status)
 
  INPUT:
   status: <uint8> de geaggregeerde status, elk bit stelt een status voor
 
  OUTPUT:
   statustype: <uint8> bepaald welk symbool geplot wordt, mogelijke waarden
                   - C.ALLES     
                   - C.HIAAT  
                   - C.OUTLIER
                   - C.ANDERS 
   bvalide:    <uint8> mogelijke waarden:
                   - 1: valide 
                   - 0: nog niet valide
   bherkomst:  <uint8> mogelijke waarden:
                   - 1: geinterpoleerd
                   - 0: niet geinterpoleerd
   aggregstatus: <uint8> mogelijke waarden: (nog niet in gebruik)
                   - aggregstatus.numhiaat   
                   - aggregstatus.numoutlier
                   - aggregstatus.numanders  
                   - aggregstatus.numvalide  
                   - aggregstatus.numtotal  
 
  METHODE:
   deze procedure roept eerst "getbinstatus" aan om de uint8 statuscodes
   te ontcijferen. Daarna wordt op basis van een aantal beslisregels een
   statustype bepaald. Om te voorkomen dat een tweede aanroep van
   getbinstatus noodzakelijk is worden ook enige andere attributen
   geretourneerd.
  
  ZIE OOK:
   donstat2binstatus
   binstatus2donstat
   setbinstatus
   getbinstatus

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

29-Oct-2007 05:27:26

Size:

5310 bytes

Calls functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>classify.m

(back to table of contents)
  classify - deel de vector W in in klassen
 
  CALL:
   Classificatie = classify(W,Klassen)
 
  INPUT:
   W:       <nx1 matrix> met de waarden die geclassificeerd moeten worden
   Klassen: <rowvector> met de klassegrenzen voor W
 
  OUTPUT:               
   Classificatie: <nx1 matrix> met de klassenummers 
                  klassenummer = (nul of length(Klassen)) als een
                  element niet ingedeeld kan worden in een van de
                  opgegeven klassen
 
  EXAMPLE:        klassificeer de vector [1   m.b.v. de klassen [0 5 10 15]
                                          12
                                          9] 
                  stap 1: maak van [0 5 10 15]   A:=[0 5 10 15
                                                     0 5 10 15
                                                     0 5 10 15]
                  stap 2: maak van [1     B:=[1  1  1  1
                                    12        12 12 12 12
                                    9]        9  9  9  9]
                  stap 3: B > A -->  C:=[1 0 0 0
                                         1 1 1 0
                                         1 1 0 0]
                  stap 4: bereken C.*[1 2 3 4         D:=[1 0 0 0
                                      1 2 3 4  -->        1 2 3 0
                                      1 2 3 4]            1 2 0 0]
                  stap 5: de klassen zijn nu het max(D,[],2)
                          oftewel [1
                                   3
                                   2]

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

22-Oct-2006 14:32:10

Size:

2385 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>constantes_wavix.m

(back to table of contents)
  constantes_wavix - definieer constantes voor de WAVIX applicatie
  
  CALL:
   C = constantes_wavix(dummy_arg)
   
  INPUT:
   DummyArgument: het definieren van tenminste 1 invoer argument heeft tot
                  gevolg dat een hulpscherm wordt gestart voor het instellen
                  van de opties
   
  OUTPUT:
   C: <struct> met een groot aantal velden ieder veld bevat een constante
               die in de applicatie gebruikt wordt
      
  APPROACH:
  Door gebruik te maken van constantes wordt vermeden dat door kleine
  spelfouten fouten in de applicatie sluipen die niet gedetecteerd worden 
  met een foutmelding.
  Bovendien kunnen opties op deze wijze centraal gewijzigd worden

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

25-Jun-2008 11:01:34

Size:

12612 bytes

Calls functions:

ModelitUtilRoot>get_constants.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>windowpos.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m

(back to table of contents)
  db2mat - zet de centrale database om in matrices
 
  CALL:
   Mat = db2mat(db,IDs,starttime,endtime)
 
  INPUT:
   db           <struct> centrale wavix database
   IDs:         <vector> IDs van op te halen reeksen
   starttime    <datenum> (optioneel) het tijdstip van het begin van het 
                tijdsinterval waarvoor de data geselecteerd moet worden
   endtime      <datenum> (optioneel) het tijdstip van het eind van het
                tijdsinterval waarvoor de data geselecteerd moet worden
                N.B. als starttime en endtime niet gespecificeerd zijn dan
                     worden voor deze tijden de vroegste en laatste tijd van
                     alle dias gebruikt
 
  OUTPUT:
   Mat          <struct> de database omgezet in een structure met de velden 
                  - DiaIndx         reeks index ivm terugschrijven data
                  - Wkey <struct>   reekssleutel voor zoeken in NN definitie
                    +---- sLoccod
                    +---- sParcod
                    +---- sVatcod
                  - tijdsas         gemeenschappelijke tijdsas van de vroegste
                                    tot laatste waarneming van alle dias
                  - diatijd         <matrix> dimensies: 2 bij aantal dias met in:
                                         rij1 de startindex voor de tijdsas van de dia
                                         rij2 de eindindex voor de tijdsas van de dia
                  - W               In elke kolom van de velden 
                  - stdW            W, stdW, V, stdV en status
                  - V               de waarden van de dia op de correcte    
                  - stdV            plek t.o.v. de tijdsas
                  - status

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

28-Nov-2006 17:41:14

Size:

10764 bytes

Calls functions:

ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>is_in.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>DATABEHEER>exportascii.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m

(back to table of contents)
  dbtools -
 
  CALL:
   [result,taxis,stdW] = dbtools(db,operation,varargin)
 
  INPUT:
   operation:   <string> mogelijke waarden:
                'ID2Indx'
                 haal de index van een dia op
                 result = dbtools(db,'ID2Indx',ID)
                'Indx2W'
                 haal waarde en status op uit reeks met opgegeven
                 index en tijdas
                 [result,status] = dbtools(db,'Indx2W',indx,taxisRetrieve)
                 [result,status] = dbtools(db,'Indx2W',indx)
                'ID2W'
                 Haal waarde en status op uit reeks met opgegeven
                 ID en tijdas
                 [result,status] = dbtools(db,'ID2W',ID,taxisRetrieve)
                 [result,status] = dbtools(db,'ID2W',ID)
                'Dia2W'
                 Haal waarde en status op uit Dia structure en tijdas
                 [result,status] = dbtools(dia,'Dia2W',taxisRetrieve)
                 [result,status] = dbtools(dia,'Dia2W')
                'getdia'
                 haal dia op met bekende ID
                 [result,status] = dbtools(db,'Dia2W',ID)
                'get'
                 get the values of the dia specified by ID
                 [result,status] = dbtools(db,'ID2W',ID,taxisRetrieve)
                 [result,status] = dbtools(db,'ID2W',ID)
                'getnetwerknamen'
                 haal de namen van de netwerken in het werkgebied op
                 result = dbtools(db,'getnetwerknamen')
                'getconvnetwerknamen'
                 haal de namen van de conversie netwerken in het
                 werkgebied op
                 result = dbtools(db,'getconvnetwerknamen')
                'getlocnamen'
                 haal de namen van de aanwezige locaties op
                 result = dbtools(db,'getlocnamen')
                'getvarnamen'
                 haal de namen van de aanwezige variabelen op een
                 locatie op
                 result = dbtools(db,'getvarnamen',locatie)
                'getveldappnamen'
                 haal de namen van de aanwezige veldapparaten op een
                 locatie voor een variabele op
                 result = dbtools(db,'getvarnamen',locatie,variabele)

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

22-Feb-2007 21:46:16

Size:

14816 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>eprintf.m
ModelitUtilRoot>is_in.m
ModelitUtilRoot>is_in_eq.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_conversie_network.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>donstat2binstatus.m

(back to table of contents)
  donstat2binstatus - transformeer Donar codering naar Wavix binaire status
 
  CALL:
   status = donstat2binstatus(donstat)
  
  INPUT:
   donstat: <vector of uint8> Donar status, mogelijke waarden
                        0 : gewone waarneming
                        25: geinterpoleerde waarde
                        99: hiaat
 
  OUTPUT:
   status: <vector of uint8> binnen wavix gebruikte geaggregeerde binaire
           status met:
                 		bit 1: Hiaat        	 
                        bit 2: Controle         
                 		bit 3: Outlier	        
                 		bit 4: Validatie status	
                 		bit 5: Herkomst	 
 
  ZIE OOK:
   binstatus2donstat
   setbinstatus
   getbinstatus
   binstatus2type

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 18:21:10

Size:

1569 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m

(back to table of contents)
  emptystruct - maak structures aan die al het goede formaat hebben
 
  INPUT:
   type:    <string>
 
  OUTPUT:
   'convnetwerk'   ->   S.naam = ''
                        S.status = 0        %0 niet getrained, 1 getrained, 2 getrained zonder uitvoer informatie
                        S.netwerk = emptystruct('objnetwork') 
                        S.data = emptystruct('data')
                        S.output = []
                        S.target = []
                        S.preprocess = emptystruct('preprocess') 
                        S.ensemble = emptystruct('ensemble') 
                        S.output = emptystruct('output')
                        S.Delta = []
   'netwerk'   ->       S.naam = ''
                        S.status = 0        %0 niet getrained, 1 getrained, 2 getrained zonder uitvoer informatie
                        S.netwerk = emptystruct('objnetwork') 
                        S.data = emptystruct('data')
                        S.output = []
                        S.target = []
                        S.preprocess = emptystruct('preprocess') 
                        S.ensemble = emptystruct('ensemble') 
                        S.output = emptystruct('output')
                        S.Delta = 0
   'ensemble'   ->      S.herhalingen = []
                        S.trainingset = []
                        S.validatieset = []
                        S.testset = []
                        S.member = emptystruct('member')
   'member'   ->        S.IW = []
                        S.LW = []
                        S.b = []
                        S.output = []
                        S.testindex = []
   'preprocess'->       S.meanp = []
                        S.stdp = []
                        S.meant = []
                        S.stdt = []
                        S.transmat = []
                        S.pca = []
   'tmpnetwork'->       S.naam = []
                        S.invoer = ''
                        S.uitvoer = ''
                        S.neuronen = []
                        S.transferfunctie = ''
                        S.trainfunctie = ''
                        S.doelfunctie = ''
                        S.herhalingen = []
                        S.pca = []
                        S.trainingset = []
                        S.validatieset = [] 
                        S.testset = []
   'parameters'         S.epochs = 100
                        S.goal = 0
                        S.lr = 0.0100
                        S.lr_dec = 0.7000
                        S.lr_inc = 1.0500
                        S.max_fail = 5
                        S.mem_reduc = 1
                        S.min_grad = 1.0000e-06
                        S.mu = 0.0010
                        S.mu_dec = 0.1000
                        S.mu_inc = 10
                        S.mu_max = 1.0000e+010
                        S.max_perf_inc = 1.0400
                        S.mc = 0.9000    
                        S.deltamax = 50
                        S.delta_inc = 1.2000
                        S.delta_dec = 0.5000
                        S.delta0 = 0.0700
                        S.sigma = 5.0000e-005
                        S.lambda = 5.0000e-007
                        S.searchFcn = 'srchbac'
                        S.scale_tol = 20
                        S.alpha = 0.0010
                        S.beta = 0.1000
                        S.delta = 0.0100
                        S.gama = 0.1000
                        S.low_lim = 0.1000
                        S.up_lim = 0.5000
                        S.maxstep = 100
                        S.minstep = 1.0000e-006
                        S.bmax = 26
                        S.show = 25
                        S.time = Inf
   'dia'->              S.ID = 1
                        S.blok = []
                        S.stdW = []
                        S.V = []
                        S.stdV = []
                        S.status = []   %status toegevoegd 21 aug 2004
   'vhg'->              S.richting = []
                        S.snelheid = []
                        S.locs = []
                        S.factor = []
                        S.sigma = []
   'model'->            S.stuurfile = ''
                        S.netwerkfile = ''
                        S.vhgfile = ''
   'objnetwork' ->      S.neuronen = []
                        S.transferfunctie = ''
                        S.trainfunctie = ''
                        S.doelfunctie = ''
                        S.parameters = emptystruct('parameters') 
   'toestand' ->        S.main = ''
                        S.sub = ''
   'proxy'              S.poort = '80'
                        S.adres = 'proxy.minvenw.nl'
   'matroosprefs'       S.ftpsite = 'http://matroos2/matroos/timeseries/php/image_series_test.php/'
                        S.interval = 240
                        S.directory = ''

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

12-Sep-2007 14:47:52

Size:

10686 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyu.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>HOOFDSCHERM>emptyud.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m

(back to table of contents)
  eval_outliers - Markeer punten die buiten het bereik vallen
 
  CALL:
   db = eval_bereik(db, guiopt, C)
 
  INPUT:
   db:      <undoredo object> de centrale database
   guiopt:  <undoredo object> met de opties van het Wavix hoofdscherm
   C:       <struct> met wavix constantes
 
  OUTPUT:
   db:      <struct> de centrale database met punten die buiten bereik 
                     vallen gemarkeerd als outliers

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

15-Oct-2008 12:53:20

Size:

1448 bytes

Calls functions:

ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m

(back to table of contents)
  eval_outliers - bepaal outliers
 
  CALL:
   db = eval_outliers(db,guiopt,C,label)
 
  INPUT:
   db:      <struct> de centrale database
   guiopt:  <struct> met de opties van het Wavix hoofdscherm
   C:       <struct> met wavix constantes
   label:   <string> commentaar voor het logboek
 
  OUTPUT:
   db:      <struct> de centrale database met outliers
 

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

15-Oct-2008 12:54:10

Size:

3856 bytes

Calls functions:

ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>fieldnameprint.m

(back to table of contents)
  fieldnameprint - verwijder symbolen uit string
 
  CALL:
   str = fieldnameprint(str)
 
  INPUT:
   str:     <string> de string waaruit niet-toegestane symbolen verwijderd
            moeten worden
 
  OUTPUT:
   str:     <string> de string met daarin ' ','(',')','[',']' verwijderd
            en '/' en '\' vervangen door '_'
 
  ZIE OOK:
   databeheer

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 10:34:48

Size:

649 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>databeheerview.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m

(back to table of contents)
  get_C - haal de structuur met de wavix constantes op
  
  CALL:
   C = get_C
      
  INPUT:
   geen invoer
      
  OUTPUT:
   C:   <struct> met wavix constantes
  
  See also: undoredo/store get_db

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 15:18:26

Size:

303 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>DATABEHEER>select_interval.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2type.m
ApplicationRoot>wavixIV>CONHOP>dampnewton.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

(back to table of contents)
  get_db - haal de databasestructure op uit de userdata van het hoofdscherm
  
  CALL:
   [db,C] = get_db
      
  INPUT:
   geen invoer
      
  OUTPUT:
   db: <struct> de centrale database
   C:  <struct> met constantes
  
  See also: undoredo/store, get_C

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 15:29:56

Size:

450 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>HOOFDSCHERM>Estimate.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>load_wavixascii.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_werkgebied.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wav_check_exit.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>MONITOR>exportmon.m
ApplicationRoot>WavixIV>test.m
ApplicationRoot>wavixIV>DATABEHEER>dealwithdiablok.m
ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>CONHOP>start_conhop.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m
ApplicationRoot>wavixIV>DATABEHEER>RemoveDiablok.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_databeheer.m

(back to table of contents)
  get_opt_databeheer - haal de settings van Wavix databeheer op
                      (deze moet wel opgestart zijn)

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 13:29:24

Size:

204 bytes

Calls functions:

ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m

(back to table of contents)
  get_opt_main - haal de options structure van het Wavix hoofdscherm op
 
  CALL:
   [guiopt, C] = get_opt_main
 
  INPUT:
   geen invoer
 
  OUTPUT:
   guiopt: <struct> met de opties van het Wavix hoofdscherm
   C:      <struct> met de Wavix constantes

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

24-Apr-2007 22:24:48

Size:

418 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HOOFDSCHERM>set_meetbereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HOOFDSCHERM>wavixview.m
ApplicationRoot>wavixIV>HOOFDSCHERM>selectinterval.m
ApplicationRoot>WavixIV>wavixshowdata.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m

(back to table of contents)
  get_opt_netwerkbeheer - haal de settings van Wavix netwerkbeheer op
                          (deze moet wel opgestart zijn)

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 17:51:26

Size:

218 bytes

Calls functions:

ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowdata.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_regressiebeheer.m

(back to table of contents)
  get_opt_regressiebeheer - haal de settings van Wavix regressiebeheer op
                            (deze moet wel opgestart zijn)

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 19:31:12

Size:

227 bytes

Calls functions:

ModelitUtilRoot>gch.m

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

(back to table of contents)
  getbinstatus - haal statusbits op voor alle statustypes uit de
                 geaggregeerde status
 
  CALL:
   [bhiaat,bcontrole,boutlier,bvalide,bherkomst] = getbinstatus(status)
 
  INPUT:
   status: <uint8> de geaggregeerde status, elk bit stelt een status voor
  
  OUTPUT:
   bhiaat:      bit 1 van status
   bcontrole:   bit 2 van status
   boutlier:    bit 3 van status
   bvalide:     bit 4 van status
   bherkomst:   bit 5 van status
   bdroogval:   bit 6 van status
 
  See also:  bitget, donstat2binstatus, binstatus2donstat, setbinstatus,
             binstatus2type

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

02-Nov-2007 16:41:34

Size:

2958 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2type.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0_1.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m
ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m
ApplicationRoot>wavixIV>HULPFUNCTIES>binstatus2donstat.m
ApplicationRoot>wavixIV>DATABEHEER>set_hiaat.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>invoer2string.m

(back to table of contents)
  invoer2string - display an invoer-structure as a string
  
  CALL:
   string = invoer2string(invoer)
  
  INPUT:
   invoer: <struct> see emptystruct('TC')
  
  OUTPUT:
   string: <string> 
  
  See also: emptystruct, DisplayNet

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 22:02:00

Size:

514 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m

(back to table of contents)
  listW3H - vul een struct array van W3H structures op basis van een WAVIX
            dia array
  CALL:
   W3Hs = listW3H(dia,indices)
  
  INPUT:
   dia:     <struct array> met dia's (zie emptystruct('dia'))
   indices: <vector> (optioneel) te gebruiken indices (default: alle)
 
  OUTPUT:
   W3Hs:    <struct array> van het W3H gedeelte van een dia
  
  ZIE OOK:
   listRKS

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 08:58:28

Size:

719 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>do_import_dia.m
ApplicationRoot>wavixIV>DATABEHEER>check_Hm0.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>mattools.m

(back to table of contents)
  mattools - voer operaties uit op Mat,
             Mat is verkregen uit de database door db2mat toe te passen
 
  CALL:
   Mat = mattools(Mat,operation,varargin)
 
  INPUT:
   Mat:         <struct> de database in matrixvorm, verkregen met db2mat
   operation:   <string> de operatie die op Mat uitgevoerd moet worden:
                    - 'FillWwithV' vervang de hiaten door geschatte waarden
                    - 'DeleteDias' verwijder dias uit Mat
                    - 'KeepDias' behoud de opgegeven dias en gooi de rest
                      weg uit Mat
   varargin:    <vector> met indices van de te verwijderen of de te
                behouden dias, is leeg voor de optie FillWwithV
 
  OUTPUT:
   Mat:         <struct> de bijgewerkte database in matrixvorm, de
                originele database is niet veranderd
 
  See also: db2mat

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

03-Oct-2007 16:22:06

Size:

4314 bytes

Calls functions:

ModelitUtilRoot>is_in_struct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>HOOFDSCHERM>statreport.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m

(back to table of contents)
  parseNNInvoer - Utility om een aantal sleutels op te delen in 1 sleutel
                  per tshift zodat ze gebruikt kunnen worden voor de
                  neurale netwerken
  
  CALL:
   S = parseNNInvoer(invoer)
 
  INPUT:
   invoer:  <struct array> met sleutels
            velden: - sLoccod: <string>
                    - sParcod: <string>
                    - sVatcod: <string>
                    - tShift:  <integer> lengte 1 of meer
 
  OUTPUT:
   S:       <struct array> aantal inputs (1 per tijdstip) lang met sleutels
            velden: - sLoccod: <string>
                    - sParcod: <string>
                    - sVatcod: <string>
                    - tShift:  <integer> lengte 1
  
  See also: sleutel2struct

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

14-Oct-2006 02:08:18

Size:

1461 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>CONHOP>NN_depend.m
ApplicationRoot>wavixIV>CONHOP>selectPredictable.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>reeksaanduiding.m

(back to table of contents)
  reeksaanduiding - maak een header ID Locatie Parameter Sensor aan en
                    print voor elke dia deze gegevens
  
  CALL:
   [str,hdr] = reeksaanduiding(dia)
 
  INPUT:
   dia: <array of struct> met dia's
 
  OUTPUT:
   str: <string> de ID-Locatie-Parameter-Sensor combinaties voor elke dia
   hdr: <string> de header 'ID Locatie Parameter Sensor'
 

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 06:15:04

Size:

719 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>DATABEHEER>limit_time.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>separatestr.m

(back to table of contents)
  separatestr - deel de string op in delen die gescheiden worden door een
                spatie ' '
 
  CALL:
   varargout = separatestr(string)
 
  INPUT:
   string:      <string> de string die opgedeeld moet worden
 
  OUTPUT:
   varargout:   <string> hierin komen de delen van de op te delen string
 
  VOORBEELD: 
   [a,b,c] = separatestr('A B C') => a == 'A', b == 'B', c == 'C'
   [a,b] = separatestr('A B C') => a == 'A', b == 'B C'
   [a,b,c,d] = separatestr('A B C') => a == 'A', b == 'B', c == 'C', d == ''

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

23-Dec-2004 07:15:24

Size:

766 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>setbinstatus.m

(back to table of contents)
  setbinstatus - aggregeer de statusbits tot 1 getal, door de afzonderlijke
                 bits van dat getal te zetten
 
  CALL:
   status = setbinstatus(bhiaat,bcontrole,boutlier,bvalide,bherkomst)
 
  INPUT:
   bhiaat:      <(0 of 1)> bit 1 van status
   bcontrole:   <(0 of 1)> bit 2 van status
   boutlier:    <(0 of 1)> bit 3 van status
   bvalide:     <(0 of 1)> bit 4 van status
   bherkomst:   <(0 of 1)> bit 5 van status
   bdroogval:   <(0 of 1)> bit 6 van status
 
  OUTPUT:
   status:      <uint8> geaggregeerde statusbits voor alle data
  
  See also:  donstat2binstatus, binstatus2donstat, getbinstatus, 
             binstatus2type

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

02-Nov-2007 16:42:10

Size:

1837 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m
ApplicationRoot>wavixIV>HOOFDSCHERM>do_apply.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_bereik.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>CONHOP>EstimateConhop3.m
ApplicationRoot>wavixIV>DATABEHEER>set_hiaat.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>uitvoer2string.m

(back to table of contents)
  invoer2string - display an invoer-structure as a string
  
  CALL:
   string = uitvoer2string(uitvoer)
  
  INPUT:
   uitvoer: <struct> see emptystruct('TC')
  
  OUTPUT:
   string: <string> 
  
  See also: emptystruct, DisplayNet

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

13-Oct-2006 22:01:18

Size:

462 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>HULPFUNCTIES>view_help.m

(back to table of contents)
  view_help -

Path:

ApplicationRoot\wavixIV\HULPFUNCTIES

Last modified:

01-Aug-2008 17:46:06

Size:

1917 bytes

Calls functions:

ModelitUtilRoot>@helpmenuobj>helpmenuobj.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)

ApplicationRoot>wavixIV>MONITOR>exportmon.m

(back to table of contents)
  exportmon - export het validatiemodel t.b.v van de wavix monitor
  
  CALL:
   exportmon(obj, event)
  
  INPUT:
   obj:   <handle> van de aanroepende uicontrol
   event: <leeg> standaard matlab callback argument
   fname: <string> (optioneel) met de naam van het bestand waar het
                   validatiemodel heengeschreven moet worden, als niet 
                   gespecificeerd dan verschijnt er een filebrowser.
  
  OUPUT:
   geen directe uitvoer, het validatiemodel is gesaved in een door de
   gebruiker gespecificeerd bestand

Path:

ApplicationRoot\wavixIV\MONITOR

Last modified:

22-Nov-2007 09:22:48

Size:

2508 bytes

Calls functions:

ModelitUtilRoot>putfile.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>wavixmain.m

(back to table of contents)

ApplicationRoot>wavixIV>MONITOR>get_opt_monitor.m

(back to table of contents)
  get_opt_monitor - haal de settings van Wavix monitor op
                    (deze moet wel opgestart zijn)
  
  CALL:
   [opt, HWIN, C] = get_opt_monitor
  
  INPUT:
   geen invoer
  
  OUTPUT:
   opt:  <undoredo object> met settings van de monitor
   HWIN: <handle> van het monitor scherm
   C:    <struct> met de wavix constantes

Path:

ApplicationRoot\wavixIV\MONITOR

Last modified:

05-Aug-2007 14:10:40

Size:

514 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>MONITOR>get_opt_monitorgraph.m

(back to table of contents)
  get_opt_monitor - haal de settings van Wavix monitor grafieken op
                    (deze moet wel opgestart zijn)
  
  CALL:
   [opt, HWIN, C] = get_opt_monitorgraph
  
  INPUT:
   geen invoer
  
  OUTPUT:
   opt:  <undoredo object> met settings van de monitor grafieken scherm
   HWIN: <handle> van het monitor grafieken scherm
   C:    <struct> met de wavix constantes

Path:

ApplicationRoot\wavixIV\MONITOR

Last modified:

14-Oct-2007 19:06:34

Size:

566 bytes

Calls functions:

Is called by functions:

ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>MONITOR>monitorgraphview.m

(back to table of contents)
  monitorgraphview - view functie voor het monitorgraph scherm
 
  CALL:
   monitorgraphview(udnew, opt, upd ,C , HWIN)
 
  INPUT:
   udnew:            <struct> de centrale database
   opt_monitorgraph: <struct> GUI settings voor de wavix monitor grafieken
   opt_monitor:      <struct> GUI settings voor de wavix monitor
   upd:              <struct> de te updaten scherm elementen
   C:                <struct> de wavix constantes
   HWIN:             <handle> van het monitorgraph scherm
 
  OUTPUT:
   geen directe output, het monitorgraph scherm is geupdate
 
  See also: monitor, monitorgraph

Path:

ApplicationRoot\wavixIV\MONITOR

Last modified:

15-Oct-2008 12:33:34

Size:

11032 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_childframes.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_deleteframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkslider2frame.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>date_ax.m
ModelitUtilRoot>diaroutines>cmp_taxis.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>pcolorPlot.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>MONITOR>monitorview.m

(back to table of contents)
  monitorview - view functie voor het monitor scherm
 
  CALL:
   monitorview(udnew, opt, upd ,C , HWIN)
 
  INPUT:
   udnew: <struct> de centrale database
   opt:   <struct> GUI settings voor de wavix monitor
   upd:   <struct> de te updaten scherm elementen
   C:     <struct> de wavix constantes
   HWIN:  <handle> van het monitor scherm
 
  OUTPUT:
   geen directe output, het monitor scherm is geupdate
 
  See also: monitor

Path:

ApplicationRoot\wavixIV\MONITOR

Last modified:

15-Oct-2008 12:50:18

Size:

11908 bytes

Calls functions:

ModelitUtilRoot>@table>table.m
ModelitUtilRoot>ANY2WGS.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>aggBins.m
ModelitUtilRoot>diaroutines>emptyW3H.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>offon.m
ModelitUtilRoot>row_is_in.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ModelitUtilRoot>utilspath.m
ModelitUtilRoot>xml_toolbox>@xml>xml.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>getbinstatus.m
ApplicationRoot>wavixIV>HULPFUNCTIES>listW3H.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m

(back to table of contents)
  AnalyseNeuralNetwork - analyse tool voor een getrained neuraal netwerk
  
  CALL:
   AnalyseNeuralNetwork(NeuralNetwork)
      
  INPUT:
   NeuralNetwork: <struct> zie emptystruct('netwerk') met het netwerk dat
                           geanalyseerd moet worden
      
  OUTPUT:
   geen directe uitvoer, een scherm wordt geopend met analysetools
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

13-Feb-2009 13:54:38

Size:

15011 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)
  DefineNeuralNetwork - Definieer een nieuw feed-forward neuraal netwerk
 
  CALL:
   NeuralNetwork = DefineNeuralNetwork(NeuralNetwork)
 
  INPUT:
   NeuralNetwork: <struct> (optioneel) van het type 'netwerk', 
                           zie emptystruct('netwerk')
                           NeuralNetwork kan leeg zijn of reeds aangemaakt
 
  OUTPUT:
   NeuralNetwork: <struct> van het type 'netwerk', zie
                           emptystruct('netwerk')
                           NeuralNetwork is leeg als operatie afgebroken is
                           

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

22-Mar-2009 13:41:37

Size:

83660 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>@network>network.m
ApplicationRoot>WavixIV>neural501>mapstd.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>MBDresizedir>ur_getframechildren.m
ModelitUtilRoot>PublicFiles>plot_geo.m
ModelitUtilRoot>autolegend.m
ModelitUtilRoot>diaroutines>ComposeDiaList.m
ModelitUtilRoot>diaroutines>displayStations.m
ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>is_in_struct.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>jacontrol>expandAll.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undomenu.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>zoomtool.m
ApplicationRoot>wavixIV>CONHOP>TestVars.m
ApplicationRoot>wavixIV>CONHOP>matgetvar2.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>nwbhconstants.m
ApplicationRoot>wavixIV>NETWERKBEHEER>showbar.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)
  ListAction - Handel commandos of die met sorttables te maken hebben
 
  CALL:
   ListAction(obj,event,hlist,mode)
 
  INPUT:
   obj:     <handle> van aanroepende uicontrol
   event:   <leeg> 
   hlist:   <jacontrol> van het type sorttable
   mode:    <string> bepaald uit te voeren actie, mogelijke waarden:
                     - exporteren
                     - toevoegen
                     - verwijderen
                     - wijzigen
                     - trainen
                     - analyseren
                     - saveasc
                     - savenet
                     - wistraining
                     - simuleren
  
  OUTPUT:
   geen directe uitvoer
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

15-Oct-2008 12:46:02

Size:

15538 bytes

Calls functions:

ModelitUtilRoot>diaroutines>long2datenum.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>jacontrol>isopen.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>CONHOP>TestVars.m
ApplicationRoot>wavixIV>HULPFUNCTIES>db2mat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_main.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)
  ShowNeuralNetworkWeights - visualiseer de gewichten en bias van elke laag
                             en elk 'member' van een neuraal netwerk
  CALL:
   ShowNeuralNetworkWeights(NetworkStruct)
 
  INPUT:
   NetworkStruct:   <struct> een neuraal netwerk zie emptystruct('netwerk')
 
  OUTPUT:
   geen directe uitvoer, de gewichten en bias van het netwerk worden
   getoond in een hinton grafiek
 
  ZIE OOK:
   hinton
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

13-Feb-2009 13:55:06

Size:

9256 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>evaldepend.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>mdlt_dependencies.m
ModelitUtilRoot>mbdparse.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>NETWERKBEHEER>hinton.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>AnalyseNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>TrainNeuralNetwork2.m

(back to table of contents)
  TrainNeuralNetwork - train een neuraal netwerk
 
  CALL:
   [NetworkStruct,comment] = TrainNeuralNetwork2(W,stdW,Wkey,NetworkStruct)
 
  INPUT:
   W:             <matrix> gemeten waarden, aantal periodes bij aantal
                  reeksen groot
   stdW:          <matrix> standaardeviaties, aantal periodes bij aantal
                  reeksen groot
   Wkey:          <struct> met velden met bijbehorende (loc,var,veldapp)
                  combinatie per reeks
                          - sLoccod
                          - sParcod
                          - sVatcod
   NetworkStruct: <struct> met een neuraal netwerk
                  (zie emptystruct('netwerk')
 
  OUTPUT:
   NetworkStruct: <struct> met een neuraal netwerk, de members worden in
                  deze routine gevuld, d.w.z. de gewichten en bias worden
                  gevuld
   comment:       <string> commentaar voor het logboek, wordt gebruikt in
                           netwerkbeheer
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

02-Sep-2007 10:21:02

Size:

15135 bytes

Calls functions:

ApplicationRoot>WavixIV>neural501>dividevec.m
ApplicationRoot>WavixIV>neural501>mae.m
ApplicationRoot>WavixIV>neural501>mapstd.m
ApplicationRoot>WavixIV>neural501>minmax.m
ApplicationRoot>WavixIV>neural501>mse.m
ApplicationRoot>WavixIV>neural501>newff.m
ApplicationRoot>WavixIV>neural501>postreg.m
ApplicationRoot>WavixIV>neural501>processpca.m
ApplicationRoot>WavixIV>neural501>sse.m
ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>CONHOP>SimulateNeuralNetwork2.m
ApplicationRoot>wavixIV>CONHOP>matgetvar2.m
ApplicationRoot>wavixIV>CONHOP>simstructnet2.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>parseNNInvoer.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>accessnode.m

(back to table of contents)
  accessnode - haal de subscript (zie subsasgn) op om de opgeven knoop uit
               de boom van structure (zie gettree) te kunnen benaderen
  CALL:
   S = accessnode(node,structure,tree,labels)
 
  INPUT:
   node:          <int> de te benaderen knoop uit de boom
   structure:     <struct> de te benaderen structure
   tree:          <vector> met de boomstructuur, element i bevat de index
                  van knoop i's ouder, nul is de 'root' knooop
   labels:        <cell string> namen van de knopen
 
  OUTPUT:
   S:             <cell array> met de subscripts voor het benaderen van
                  knoop i in de structure.
 
  See also:
   subsasgn, mbdsubsasgn, gettree

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

15-Oct-2008 12:29:54

Size:

1006 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>gettree.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m

(back to table of contents)
  do_import_network - importeer netwerken voor het bijschatten van de 
                      hoofdsensoren naar het werkgebied
  
  CALL:
   u = do_import_network(C,fname,NetworkArray,u)
    
  INPUT:
   C:              <struct> met de wavix constantes
   fname:          <string> met de naam van het te importeren bestand
   NetworkArray:   <array of struct> van netwerken zie
                   emptystruct('netwerk')
   u:              <struct> de centrale database
 
  OUTPUT:
   u:              <struct> de centrale database met de lijst met neurale
                   netwerken aangepast
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

01-Oct-2007 10:09:38

Size:

1990 bytes

Calls functions:

ModelitUtilRoot>jacontrol>isopen.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>gettree.m

(back to table of contents)
  gettree - haal de boomstructuur van een 'structure' op
  
  CALL:
   [tree,labels] = gettree(structure) 
 
  INPUT:
   structure:     <struct> een willekeurige 'structure'
 
  OUTPUT:
   tree:          <vector> met de boomstructuur, element i bevat de index
                  van knoop i's ouder, nul is de 'root' knooop
   labels:        <cell string> namen van de knopen
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

22-Dec-2004 11:30:48

Size:

1109 bytes

Calls functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>accessnode.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m
ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>hinton.m

(back to table of contents)
  hinton - hinton grafiek van een matrix en een vector in een raster met
           vierkanten (w is normaliter een vector met weights, 
                       b is normaliter een vector met biases)
           de oppervlakte van elk vierkant stelt de grootte van het
           corresponderde element.
           de kleur is rood voor negatieve waarden, groen voor positieve
 
  CALL:
   hinton(w,b,max_m,min_m)
 
  INPUT:
   w:       <matrix> afmetingen: MxN   
   b:       <vector> afmetingen: Mx1
   max_m:   <double> (optioneel) maximum absolute waarde in w
                     default = max(max(abs(w)))
   min_m:   <double> (optioneel) minimum abasolute waarde in w
                     default = max(max(abs(w)))/100
 
  OUTPUT:
   geen directe output,
   de hinton grafiek wordt afgebeeld in het huidige figuur
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

22-Dec-2004 12:53:32

Size:

3573 bytes

Calls functions:

ModelitUtilRoot>patchvalue.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ShowNeuralNetworkWeights.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)
  netwerkbeheer - installeer de netwerkbeheer GUI voor het importeren,
                  schatten en exporteren van neurale netwerkenreeksenlijst
  
  CALL: 
   netwerkbeheer(obj,event)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol, (wordt niet gebruikt)
   event: <leeg> standaard argument van een callback (wordt niet gebruikt)
  
  OUTPUT:
   geen directe uitvoer, het netwerkbeheer scherm wordt geopend
      
  APPROACH:
   Deze functie kijkt of het netwerkbeheer scherm al is geinstalleerd en
   maakt het in dat geval current. 
   Zo niet, dan wordt het netwerkbeheer scherm geinitialiseerd.
   Deze functie module bevat alle define- functies waarmee het scherm
   wordt opgebouwd, en de meeste van de callback functies die vanuit het
   scherm kunnen worden aangeroepen.  
 
  See also:  netwerkbeheerview

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

13-Feb-2009 13:54:58

Size:

19079 bytes

Calls functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_exitbutton.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_patchprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>asciiedit.m
ModelitUtilRoot>centralpos.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>jacontrol>@jacontrol>jacontrol.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>shiftup.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_netwerkbeheer.m
ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m
ApplicationRoot>wavixIV>NETWERKBEHEER>do_import_network.m
ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheerview.m

(back to table of contents)
  netwerkbeheerview - view functie voor het netwerkbeheer scherm
 
  CALL:
   netwerkbeheerview(udnew,opt,upd,C,HWIN)
 
  INPUT:
   udnew: <struct> de centrale database
   opt:   <struct> GUI settings voor netwerkbeheer
   upd:   <struct> de te updaten scherm elementen
   C:     <struct> de wavix constantes
   HWIN:  <handle> van het netwerkbeheer scherm
 
  OUTPUT:
   geen directe output, het netwerkbeheer scherm is geupdate

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

15-Oct-2008 12:53:46

Size:

1438 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>gcjh.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComposeNetworkList.m
ApplicationRoot>wavixIV>HULPFUNCTIES>DisplayNet.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>nwbhconstants.m

(back to table of contents)
  nwbhconstants - definieer een aantal constantes die specifiek zijn voor
                  het netwerkbeheer scherm
 
  CALL:
   D = nwbhconstants
  
  INPUT:
   geen input
 
  OUTPUT:
   D:   <struct> met de constantes die specifiek zijn voor het
        netwerkbeheer scherm
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

30-Oct-2006 13:34:52

Size:

1053 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>plotperf.m

(back to table of contents)
  plotperf - plot netwerk performance en als aanwezig ook de validatie- en
             test performance
 
  CALL:
   stop = plotperf(tr,goal,name,epoch)
 
  INPUT:
   tr:      <struct> trainingrecord
   goal:    <double> (optioneel) performance goal, default = NaN
   name:    <string> (optioneel) t goal, default = ''
   epoch:   <double> (optioneel) aantal epochs, default is lengte van 
             trainingsrecord
 
  OUTPUT:
   stop:    <integer> afbreken training
 
  ZIE OOK:
   Matlab neural network toolbox - plotperf

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

23-Dec-2004 10:51:30

Size:

6450 bytes

Calls functions:

ModelitUtilRoot>gch.m

Is called by functions:

ModelitUtilRoot>loadnnpackage.m
ApplicationRoot>WavixIV>neural501>newrb.m
ApplicationRoot>WavixIV>neural501>template_train.m
ApplicationRoot>WavixIV>neural501>trainb.m
ApplicationRoot>WavixIV>neural501>trainbfg.m
ApplicationRoot>WavixIV>neural501>trainc.m
ApplicationRoot>WavixIV>neural501>traincgb.m
ApplicationRoot>WavixIV>neural501>traincgf.m
ApplicationRoot>WavixIV>neural501>traincgp.m
ApplicationRoot>WavixIV>neural501>traingd.m
ApplicationRoot>WavixIV>neural501>traingda.m
ApplicationRoot>WavixIV>neural501>traingdm.m
ApplicationRoot>WavixIV>neural501>traingdx.m
ApplicationRoot>WavixIV>neural501>trainlm.m
ApplicationRoot>WavixIV>neural501>trainoss.m
ApplicationRoot>WavixIV>neural501>trainr.m
ApplicationRoot>WavixIV>neural501>trainrp.m
ApplicationRoot>WavixIV>neural501>trainscg.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>readasciinetwork.m

(back to table of contents)
  readasciinetwork - lees netwerken in ascii formaat in
 
  CALL:
   [networkArray,db] = readasciinetwork(filename,db)
 
  INPUT:
   filename:       <string> met het in te lezen bestand
   db:             <struct> de centrale database, wordt alleen voor
                   bijwerken logboek gebruikt. Mag [] zijn als functie voor
                   preview doelen wordt gebruikt.
 
  OUTPUT:
   networkArray:   <array of struct> met netwerken
                   Opmerking: wanneer aanroep niet succesvol is wordt een leeg
                   [0x1] structure array gererourneerd. In de aanroepende
                   routine kan dus evt. getest worden met isempty(networkArray)
   db:             <struct> de bijgewerkte centrale database.
 
  METHODE:
  - lees de file in en verwijder commentaar (% regels)
  - bepaal de indices van de blokken (sjabloon en netwerk)
  - lees de sjablonen in en construeer tmpnetworkStruct
    voor elk sjabloon met daarin de opgegeven velden
  - lees de netwerken in en construeer voor elk netwerk
    een tmpnetworkStruct met daarin de gedefinieerde
    velden
  - combineer de tmpnetworkStruct van de sjablonen met de
    tmpnetworkStruct van de netwerken tot een
    netwerkstruct

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

13-Sep-2007 09:52:06

Size:

35619 bytes

Calls functions:

ModelitUtilRoot>exist_cmp.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>strvscat.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>separatestr.m
ApplicationRoot>wavixIV>NETWERKBEHEER>accessnode.m
ApplicationRoot>wavixIV>NETWERKBEHEER>gettree.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>netwerkbeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>showbar.m

(back to table of contents)
  showbar - show bargraph with labels and selection 
  
  CALL:
   showbar(h_axis,alpha,labelx,labely,selected,threshold,value)
  
  INPUT:
   h_axis:    <handle> of axis to plot in
   alpha:     <matrix> with values
   labelx:    <string> label for x-axis
   labely:    <string> label for y-axis
   selected:  index van geselecteerde elementen (worden groen
              gekleurd), niet-geselecteerde worden rood gekleurd
   threshold: drempel waarboven de elementen groen gekleurd worden
   value:     'value' -> de waarde wordt zichtbaar als op de bar
                              wordt geklikt
                   'index' -> de index wordt zichtbaar als op de bar
                              wordt geklikt
  
  OUTPUT:
   none, a bargraph is plotted in the specified axes
  
  See also: bar, patch

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

20-Sep-2006 17:38:02

Size:

2125 bytes

Calls functions:

ModelitUtilRoot>patchvalue.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>DefineNeuralNetwork.m

(back to table of contents)

ApplicationRoot>wavixIV>NETWERKBEHEER>writeasciinetwork.m

(back to table of contents)
  writeasciinetwork - schrijf de netwerken in het werkgebied weg als
                      .asc bestanden
 
  CALL:
   writeasciinetwork(filename,net)
 
  INPUT:
   filename:    <string> de naam van het ascii-bestand
   net:         <array van struct> zie emptystruct('netwerk')
 
  OUTPUT:
   geen directe uitvoer, de netwerken zijn in een ascii-bestand
   weggeschreven
 

Path:

ApplicationRoot\wavixIV\NETWERKBEHEER

Last modified:

22-Oct-2006 20:20:58

Size:

3344 bytes

Calls functions:

ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>invoer2string.m
ApplicationRoot>wavixIV>HULPFUNCTIES>uitvoer2string.m
ApplicationRoot>wavixIV>NETWERKBEHEER>accessnode.m
ApplicationRoot>wavixIV>NETWERKBEHEER>gettree.m

Is called by functions:

ApplicationRoot>wavixIV>NETWERKBEHEER>ListAction.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m

(back to table of contents)
  CalcEstimateInit - bepaal de verhoudingen tussen de variabelen op een
                     locatie met dezelfde variabele op de andere locaties.
                     Daarbij wordt onderscheid gemaakt tussen verschillende
                     windsnelheid en windrichtingsklassen op de locatie zelf
                     voor het geval dat er geen waarnemingen zijn voor een
                     bepaalde variabele op een locatie wordt er ook een
                     regressie uitgevoerd van de variabele met de windsnelheid
                     op de betreffende locatie
 
  CALL:
   [vhg,msgstr] = CalcEstimateInit
 
  INPUT:
   geen input
 
  OUTPUT:
   vhg:         <vhg-struct> met de velden:
                     - richting  :windrichtingsklassen
                     - snelheid  :windsnelheidsklassen
                     - locs      :locaties
                     - factor    :de verhoudingsgetallen per
                                  parameter aantal windsnelheidsklassen bij
                                  aantal windsnelheidsklassen cellmat van
                                  aantal locaties bij aantal locaties
                                  matrices
                     - sigma     :de spreidingen (zie factor)
   msgstr:      <string> met eventueel gegevens over de combinaties die
                niet genoeg informatie bevatten om de regressie mee uit te voeren
 
  AANPAK:
   stap 1:      Bepaal de hoofdsensoren voor de te schatten variabelen
                en voor de windrichting en windsnelheid
   stap 2:      Selecteer een locatie en haal de windrichting en
                windsnelheid reeksen van deze locatie op deze bepalen de
                klassen voor de reeksen op deze locatie
   stap 3:      Selecteer een variabele (y) voor de locatie die in stap 2
                geselecteerd is
   stap 4:      Selecteer dezelfde variabele als in stap 3 op een andere
                locatie (x) en selecteer ook de windsnelheid op de locatie
                van stap 2
   stap 5:      Maak de tijdsas van reeks x gelijk aan de tijdsas van reeks
                y
   stap 6:      Voer voor elke windrichtingsklasse en windsnelheidsklasse
                paar een regressie uit van het type y = a*x en bereken
                tevens de spreiding van het residue
   stap 7:      Sla de resultaten op in een vhg-structure
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

25-Sep-2007 19:26:14

Size:

9173 bytes

Calls functions:

ModelitUtilRoot>multiwaitbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>classify.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>GetSensorMatrix.m

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m

(back to table of contents)
  ConfineDias2Dia - Voeg de waarden van verschillende dia's samen en houd
                    daarbij de tijdsas van de eerste dia aan
  CALL:
   [W,S] = ConfineDias2Dia(varargin)
 
  INPUT:
   varargin: <cell array> met tenminste 2 dia's
 
  Output:
   W:        <matrix> van afmeting: lengte van waarden eerste dia bij
             aantal dias gespecificeerd in varargin (length(varargin))
   S:        <matrix> (optioneel) zelfde afmeting als W, met de stdW
             (spreidingen)
 
  Aanpak:
   Stap 1a:  Maak de matrix W en zet de waarden van de eerste dia
             (varargin{1}) in de eerste kolom, de andere kolommen bevatten
             NaN's
   Stap 1b:  Als nargout == 2,Maak de matrix S en zet de stdW van de eerste dia
             (varargin{1}) in de eerste kolom, de andere kolommen bevatten
             NaN's
   Stap 2a:  Pak een voor een de waarden van de dias in varargin{2:end}
   Stap 2b:  Pak een voor een de stdW van de dias in varargin{2:end}
   Stap 3:   Maak de tijdsas van de vector gelijk aan de tijdsas van de
             eerste dia, vul hiaten op met NaN's, maak gebruik van het feit
             dat de dia's dezelfde tijdstap hebben

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

28-Nov-2006 17:41:04

Size:

4012 bytes

Calls functions:

ModelitUtilRoot>diaroutines>duration.m
ModelitUtilRoot>diaroutines>long2datenum.m

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m

(back to table of contents)
  EstimateInit - Schat de reeksen van de hoofdsensoren bij m.b.v.
                 verhoudingsgetallen
  CALL:
   [msg,db] = EstimateInit(db)
 
  INPUT:
   db:          <struct> de centrale database met relevante velden
                  - db.loc, de hoofdsensoren
                  - db.dia.W, de waarden van de hoofdreeksen
   progressbar: <jacontrol> (optioneel) type jprogressbar
 
  OUTPUT:
   msg:        <string> eventuele foutmelding
   db:         <struct> de velden V en stdV van de reeksen van de
               hoofdsensoren in de database zijn geupdate
 
  AANPAK:
   stap 1:      Bepaal de hoofdsensoren voor de te schatten variabelen
                en voor de windrichting en windsnelheid
   stap 2:      Selecteer een locatie en haal de windrichting en
                windsnelheid reeksen van deze locatie op, deze bepalen de
                klassen voor de reeksen op deze locatie
   stap 3:      Selecteer een variabele (y) voor de locatie die in stap 2
                geselecteerd is
   stap 4:      Selecteer dezelfde variabele als in stap 3 op alle andere
                locaties (x) en selecteer ook de windsnelheid op de locatie
                van stap 2
   stap 5:      Maak de tijdsas van de reeksen x gelijk aan de tijdsas van reeks
                y
   stap 6:      Haal voor elke windrichtingsklasse en windsnelheidsklasse
                de matrices op die met CalcEstimateInit zijn geschat en
                bereken het gewogen gemiddelde van de aanwezige waarden,
                (weging is omgekeerd evenredig met de spreidingsmatrix)
   stap 7:      bereken Th0 en Th3 als een schatting tussen de heersende
                windrichting en de golfrichting in de vorige periode, stdV
                wordt vast gekozen op 30

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

19-Oct-2007 09:49:18

Size:

11707 bytes

Calls functions:

ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>row_is_in.m
ApplicationRoot>wavixIV>HULPFUNCTIES>ComputeStd.m
ApplicationRoot>wavixIV>HULPFUNCTIES>classify.m
ApplicationRoot>wavixIV>HULPFUNCTIES>dbtools.m
ApplicationRoot>wavixIV>HULPFUNCTIES>eval_outliers.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_C.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>ConfineDias2Dia.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>GetSensorMatrix.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>timeshift.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>GetSensorMatrix.m

(back to table of contents)
  SensorMatrix - zet de hoofdsensoren in een matrix
  
  Call:
   [VarMat,WindMat,warning,Locs,Vars,Wind] = GetSensorMatrix(LocStructure,Locs,Vars,Wind)
 
  Input:
   LocStructure: <structure> (u.loc) met de nummers van de reeksen van
                             de hoofdsensoren met tenminste de velden:
                                              1) WINDRTG
                                              2) WINDSHD
                                              3) De velden gespecificeerd
                                                 in Vars
                 en met tenminste de locatienamen gespecificeerd in Locs
                 aanwezig in LocStructure.sLoccod
   Locs:         <cell array> met de locaties waarvoor de hoofdsensoren
                 moeten worden gebruikt (moeten aanwezig zijn in
                 LocStructure.sLoccod)
   Vars:         <cell array> met de variabelen waarvoor de hoofdsensoren
                 moeten worden gebruikt (moeten velden zijn van
                 LocStructure)
   Wind:         <cell array> met de windvariabelen waarvoor de hoofdsensoren
                 moeten worden gebruikt (moeten velden zijn van
                 LocStructure)
 
  Output:
   VarMat:       <matrix> length(Locs) bij length(Vars) met hoofdsensoren per
                 locatie voor de variabelen gespecificeerd in Vars
   WindMat:      <matrix> length(Locs) bij 2 met hoofdsensoren per locatie voor
                 WINDRTG en WINDSHD
   warning:      <cellstring> eventuele foutmelding of waarschuwing die in de
                 'calling' functie zal worden gemeld
   Locs:         <cell array> met de locaties waarvoor de hoofdsensoren
                 moeten worden gebruikt (zijn aanwezig in LocStructure.sLoccod)
   Vars:         <cell array> met de variabelen waarvoor de hoofdsensoren
                 moeten worden gebruikt (zijn aanwezig in LocStructure)
   Wind:         <cell array> met de windvariabelen waarvoor de hoofdsensoren
                 moeten worden gebruikt (zijn aanwezig in LocStructure)

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

22-Oct-2006 18:39:38

Size:

4407 bytes

Calls functions:

ModelitUtilRoot>row_is_in.m

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildmatstring.m

(back to table of contents)
  buildmatstring - maak de matrix behorend bij de factor en sigma velden
                   van het vhg veld in de database
 
  CALL:
   str = buildmatstring(udnew,variabele,snelheid,richting)
 
  INPUT:
   udnew:       <struct> de centrale database met relevant veld:
                         - udnew.vhg
   variabele:   <int> het nummer van de variabele in udnew.vhg
   snelheid:    <int> het nummer van de snelheidsklasse
   richting:    <int> het nummer van de richtingsklasse
 
  OUTPUT:
   str:         <string> de waarden voor factor en sigma voor het
                geselecteerde variabele in de opgegeven
                windrichtings-windsnelheids klasse
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

13-Oct-2006 19:51:10

Size:

1540 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildpopupstring.m

(back to table of contents)
  buildpopupstring - maak de strings voor de popupboxen in het regressiebeheer
                     scherm (Variabele, Windsnelheid, Windrichting)
  
  CALL:
   str = buildpopupstring(udnew,mode)
 
  INPUT:
   udnew:   <struct> de centrale database
   mode:    <string> met de mogelijke waarden:
                     'variabele'
                     'snelheid'
                     'richting'
            deze geven aan voor welke popupbox de velden aangepast moeten
            worden
 
  OUTPUT:
   str:     <string> de popupstring voor de popupbox in het regressiebeheer
            scherm, '<leeg>' als er nog geen hoofdsensoren aangewezen zijn
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

21-Dec-2004 13:58:02

Size:

1235 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m

(back to table of contents)
   do_import_regmodel - Import regression model to the database
  
  CALL:
    u = do_import_regmodel(vhg,u,fname)
    
  INPUT:
    vhg:    <struct> met het regressiemodel, met relevante velden
                                            - richting
                                            - snelheid
                                            - locs
                                            - factor
                                            - sigma
    u:      <struct> de centrale database met relevante velden:
                                            - data.vhg
                                            - data.model.vhgfile
    fname:  <string> (optioneel) filename het te importeren regressiemodel
 
  OUTPUT:
      u             : Updated database
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

01-Oct-2007 10:08:50

Size:

4512 bytes

Calls functions:

ModelitUtilRoot>jacontrol>isopen.m

Is called by functions:

ApplicationRoot>wavixIV>DATABEHEER>databeheer.m
ApplicationRoot>wavixIV>DATABEHEER>defaultconfig.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regbhview.m

(back to table of contents)
  regbhview - view functie voor het regressiebeheer scherm
 
  CALL:
   regbhview(udnew,opt,upd,C,HWIN)
 
  INPUT:
   udnew: <struct> de centrale database
   opt:   <struct> GUI settings voor regressiebeheer
   upd:   <struct> de te updaten scherm elementen
   C:     <struct> de wavix constantes
   HWIN:  <handle> van het regressiebeheerscherm
 
  OUTPUT:
   geen directe output, het regressiebeheer scherm is geupdate
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

15-Oct-2008 12:28:04

Size:

1473 bytes

Calls functions:

ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>validval.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildmatstring.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildpopupstring.m

Is called by functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ApplicationRoot>WavixIV>wavixshowdata.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>regressiebeheer.m

(back to table of contents)
  regressiebeheer - installeer de regressiebeheer GUI
  
  CALL: 
   regressiebeheer(obj,event)
 
  INPUT:
   obj:   <handle> van de 'calling' uicontrol, (wordt niet gebruikt)
   event: leeg, standaard argument van een callback (wordt niet gebruikt)
  
  OUTPUT:
   geen directe uitvoer, het regressiebeheer scherm wordt geopend
      
  METHODE:
   Deze functie kijkt of het regressiebeheer scherm al is geinstalleerd en
   maakt het in dat geval current. 
   Zo niet, dan wordt het regressiebeheer scherm geinitialiseerd.
   Deze functie module bevat alle define- functies waarmee het scherm
   wordt opgebouwd, en de meeste van de callback functies die vanuit het
   scherm kunnen worden aangeroepen.  
 
  See also: regbhview

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

15-Oct-2008 12:29:06

Size:

14751 bytes

Calls functions:

ApplicationRoot>WavixIV>wavixshowopts.m
ModelitUtilRoot>@filechooser>filechooser.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_arrange.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_createframe.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_lineprops.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_linkobj.m
ModelitUtilRoot>MBDresizedir>LayoutManager>lm_resize.m
ModelitUtilRoot>centralpos.m
ModelitUtilRoot>dprintf.m
ModelitUtilRoot>gch.m
ModelitUtilRoot>getcdata.m
ModelitUtilRoot>load_cmp.m
ModelitUtilRoot>matlabguru>@undoredo>undoredo.m
ModelitUtilRoot>matlabguru>store.m
ModelitUtilRoot>matlabguru>undoredocopy>ur_getopt.m
ModelitUtilRoot>mbdparse.m
ModelitUtilRoot>multiwaitbar.m
ModelitUtilRoot>putfile.m
ModelitUtilRoot>ticp.m
ModelitUtilRoot>tocp.m
ApplicationRoot>wavixIV>DATABEHEER>updatetoestand.m
ApplicationRoot>wavixIV>HOOFDSCHERM>save_data.m
ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m
ApplicationRoot>wavixIV>HULPFUNCTIES>emptystruct.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_db.m
ApplicationRoot>wavixIV>HULPFUNCTIES>get_opt_regressiebeheer.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>CalcEstimateInit.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildmatstring.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>buildpopupstring.m
ApplicationRoot>wavixIV>REGRESSIEBEHEER>do_import_regmodel.m

Is called by functions:

ApplicationRoot>wavixIV>HOOFDSCHERM>undotoolbar.m

(back to table of contents)

ApplicationRoot>wavixIV>REGRESSIEBEHEER>timeshift.m

(back to table of contents)
  shiftvector - verschuif de vector langs een tijdsas
  
  CALL: 
   shiftvector = timeshift(vector,deltaT)
 
  INPUT:
   vector       - <array> de vector die verschoven moet worden in de tijd
   deltaT       - <array of int> een vector met tijdverschuivingen b.v.
                  [-2 -1 0 1]
 
  OUTPUT:
   shiftvector  - <array> lengte vector bij lengte deltaT elke kolom van
                  shiftvector is vector verschoven in de richting van een
                  element van deltaT en aangevuld met NaN's aan de randen
 

Path:

ApplicationRoot\wavixIV\REGRESSIEBEHEER

Last modified:

21-Dec-2004 10:52:26

Size:

989 bytes

Calls functions:

Is called by functions:

ApplicationRoot>wavixIV>REGRESSIEBEHEER>EstimateInit.m

(back to table of contents)