
 

Modelit  
Elisabethdreef 5  

4101 KN Culemborg  
The Netherlands  

+31(345)531717   
 

info@modelit.nl  
www.modelit.nl  

 

  

 

 

 

 

 

 

 

 

 

 

 

User Guide for the  
Modelit Matlab Webservice 

Toolbox  
 

 
 
 
 
 
 
 

Authors  N.J. van der Zijpp  

K.J. Hoogland  
 

Latest revision :  
 

20160520  

 

 
 

  

http://www.modelit.nl/


 ii  

Revision history  
 
20160 520  Default startup.m included with the toolbox . 

 

20160308  New load balance feature: forward request to port on different 

server using IP address.  

 

20150825  Update of user guide. Chapters  ñGetting startedò and ñPreparing the 

Matlab development environmentò added. 

 

20150825  Inclusion of new utilities:  

 json2struct.m  quick and easy conversion of JSON strings to 

Matlab array of name/value pairs. Values may 

be string, numeric, true, false, n ull, JSON 

xpressions or arrays of values.  

 urlread_async.m    utility for the asynchronious consumption of  

webservices. This makes it possible to call 

multiple webservices in parallel.  

 matlabprogress.m   progress bar for urlread_async feauturing 

matlab  waitbar.  

 modelitprogress.m  progress bar for url_async futuring modelit 

nested waitbar.  

 serialize_v2.m  improved version of serialize.m. Faster, does 

not write to disk, and leads to smaller data 

transfers  

 deserialize_v2.m   counterpart of serialize_v2 . 

 

20150228  Add note on new Matlab feature ñjavaclasspath.txtò. Full source 

code now available for examples. Instructions for deployment in 

compiled mode added.  

 

20140212  Textual updates.  

 

20131002  Response and request parameters can now be set. Example s added 

for xml, html and pdf output. Toolbox has been tested with Tomcat 

versions 7.0 and 8.0.  

 

20120809  Refreshed screenshots, use consistent url's in example.  

 

20120125  Minor revisions.  

 

20110920  Update to Matlab programming reference  

 

20110902  Adde d:  info on using Matlab urlread.  

Added: configure firewall on Win 7.  

Added: configuring Dual Wan router.  

 

20110531  Minor revision, refresh screen dumps.  

 

20100918  Corrections.  

Added: verification using proxy server.  

 

20100818  Minor revision (chapter 8) . 

 

20100723  Added example for 2 webservices on 1 computer.  

 



 iii  

20091014  Added requirements and notes on troubleshooting.  

 

20090801  Initial version of the toolbox.  

 
 

 
 



 iv  

Contents  

1 Introduction  ................................ ................................ ................  1 

1.1  About the Modelit Matlab Webservice Toolbox  .........................  1 

1.2  Deployment options  ................................ .............................  2 

1.3  Setting up of a web -based solution  ................................ ........  3 

1.4  Requirements  ................................ ................................ ......  5 

1.5  Requirements for development environment  ...........................  5 

1.6  Requirements for deployment environment  .............................  5 

1.7  Difference between trial version and full version of the toolbox  . 5 

2 Getting start ed ................................ ................................ ............  6 

2.1  Contents of the install package  ................................ ..............  6 

2.2  Quick install instructions  ................................ .......................  6 

2.3  Step by step instal l instructions  ................................ .............  6 

3 Installing Apache Tomcat on the Webserver Machine  ........................  7 

3.1  Download Apache Tomcat  ................................ .....................  7 

3.2  Run the Apache Tomcat Installer  ................................ ...........  8 

3.3  Verifying the Tomcat Installation  ................................ ...........  9 

3.4  Changing Tomcat after installation  ................................ .......  10  
3.4.1  Adjusting  the Tomcat port by editing the server.xml  . 10  
3.4.2  Add/change users in the tomcat -users.xml  ..............  10  

4 Adding the Modelit Matlab Webservice Component to Apache Tomcat  12  

4.1  Copying the Web - inf directory to your disk  ...........................  12  
4.1.1  Alternative location of WEB_INF  .............................  12  

4.2  Configuring the servlet  ................................ .......................  13  

4.3  Setting up multiple webservices on one computer  ..................  17  

4.4  Load balancing  ................................ ................................ ..  17  

4.5  Failover  ................................ ................................ ............  19  

4.6  Verifying the servlet installation  ................................ ..........  19  

4.7  Troubleshooting  ................................ ................................  19  

5 Preparing the Matlab development environment  .............................  20  

5.1  Met hod 1: use the default startup.m that comes with the toolbox
 ................................ ................................ ...................  20  

5.2  Method 2: integrate the toolbox with your existing project  ......  20  
5.2.1  Installing m - files  ................................ ...................  20  
5.2.2  Setting the static Java classpath for Matlab sessions  . 20  

5.3  Verifying the Webservice installation  ................................ ....  23  

5.4  Trouble shooting  ................................ ................................  23  

6 Matlab examples  ................................ ................................ ........  24  

6.1  HTML example  ................................ ................................ ..  25  

6.2  XML example  ................................ ................................ ....  27  

6.3  HTML example with graph ................................ ...................  29  

6.4  PDF example  ................................ ................................ .....  31  

6.5  Communicate between Matlab sessions  ................................  32  

7 Using the Webservice Toolbox with compiled Matlab code  ...............  36  

7.1  Reason for deployment in compiled mode  .............................  36  



 v 

7.2  First note: Setting java classpath in the deployment environment
 ................................ ................................ ...................  36  

7.3  Second note: prevent the webservice from exiting  .................  37  

7.4  Code example  ................................ ................................ ...  38  

8 Programming reference  ................................ ...............................  40  

8.1  createMatlabServer  ................................ ............................  40  

8.2  ServerEvent Object  ................................ ............................  41  

8.3  Troubleshooting  ................................ ................................  43  
8.3.1  Java exception  ................................ .....................  43  

8.4  Callback cannot be reached for specific ports  ........................  43  

9 Windows Firewall Configuration on the Webservice Machine  .............  44  

9.1  Configuration o n Windows XP  ................................ ..............  44  
9.1.1  Opening a port  ................................ .....................  44  
9.1.2  Restricting access  ................................ .................  45  
9.1.3  Adding a range of IP -addresses (subnet mask)  .........  45  
9.1.4  Active settings  ................................ ......................  45  

9.2  Configuration on Windows 7  ................................ ................  46  
9.2.1  Interactive setup  ................................ ..................  46  
9.2.2  Command line setup  ................................ .............  46  

10  Setting up the TCP/IP configuration on the server  ..........................  47  

10.1  TCP/IP properties  ................................ ..............................  47  

10.2  Verifying TCP/IP properties  ................................ .................  48  

11  Setting up port forwarding on the network router  ...........................  50  

11.1  Introduction  ................................ ................................ ......  50  

11.2  Step 1: disable DHCP on the server  ................................ .....  50  

11.3  Example: setting up port forwarding on Draytek Vigor 2920  ...  50  

11.4  Advanced topic: Setting up redundant servers and WAN's  ......  51  

12  Verifying the Matlab Webservice installation  ................................ ..  53  

12.1  Verification with a web browser  ................................ ...........  53  

12.2  Verification with Firefox Poster  ................................ ............  53  

12.3  Verification from Matlab  ................................ .....................  54  

12.4  Verification using proxy server  ................................ ............  54  

13  Example: Integrating Matlab in web pages using XMLHttpRequest  ....  55  
  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 1 

1  Introduction  

1.1  About the Modelit Matlab Webservice Toolbox  

The Modelit Matlab Webservice Toolbox makes it possible to create 

webservices based on Matlab code in an easy manner at the lowest 
possible cost.   

 
In addition to this the toolbox provides utilities that will help you 
implement these webservices, like utilities for creating XML output from 

Matlab data,  
encapsulating Matlab figures in HTML, converting JSON strings to Matlab, 

serialize and deserialize to and from base64 encoded ASCII, or parallelize 
tasks by making asynchronous calls to webservices. The toolbox provides 
a number of examples that will help you getting started.  

 
This user guide provides a step -by -step instruction for insta lling the 

toolbox and should allow anyone with basic Matlab knowledge to create 
and deploy Matlab based webservices. In addition the user guide provides 
many useful tips and tricks that we have learned over the years.  

 
To get started right away, skip to ch apter 2.  

 

Modelit 
Webserver

Matlab
process #1

Matlab 
process #N

database

HTTP Server 
+ PHP, XSLT, 
or Javascript

Remote 
application

HTML
PDF

internet

User 
terminal

(browser)

XML
JSON

JSON
XML

Binary

server 
(Windows)

FTP
server

 

Figure 1 : Deployment options for the Matlab Webservice Toolbox  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 2 

1.2  Deployment options  

Converting your Matlab code to a webservice makes it possible that this 
code is used anywhere on the world. Your sof tware can be called from a 
HTTP server, directlty from a browser, or by another computer program. 

Apart from this interoperability advantage, making software available as a 
webservice may help you comply with  

corporate IT requirements, allows you to prote ct sensitive data, or simply 
increase computing capacity by running many instances of single 
webservice at the same time.  

 
The toolbox has many deployment options  (see Figure 1) , and new ones 

can be added upon request. The table b elow shows options that have 
been applied in the past.  
 

Deployment 
option  

Typical setup  

Browser to se rver, 
direct  

¶ Browser makes HTTP -GET request to Matlab 
server;  

¶ Matlab callback generates HTML code that is 
presented to the user. Utilities to encapsulate 

Matlab figures in HTML pages are included in the 
toolbox.  

 

Alternative use:  
¶ Matlab generates dynamic PDF documents that 

are  opened in the browser of the user.  

Application to 

server  

¶ Application makes HTTP -GET or HTTP -POST 

request to Matlab server;  
¶ In case  of HTTP -POST request: common data 

formats are XML, JSON or binary;  

¶ Matlab server replies with XML, JSON or binary 
(serialized Matlab) message;  

 
Special case: Webservice is called from Matlab using 
urlread:  

¶ The toolbox includes utilities to serialize and 
deserialize Matlab variables. This makes it 

possible to exchange  Matlab variables between 
Matlab server and Matlab session.  

¶ The toolbox includes a utility ñurlread_asyncò. 

This makes it possible to parallelize tasks.  

Browser to server, 

via external HTTP 
server  

¶ Browser makes request to HTTP server;  

¶ HTTP server runs PHP, JavaScript or XSLT and 
makes HTTP -GET or HTTP -POST request to Matlab 

server;  
¶ Matlab server replies with JSON or XML message;  
¶ Example: www.tripcast.nl  

 
 

file:///H:/d/wm/competitieReistijdPlanners/draaiboeken/www.tripcast.nl


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 3 

Things the Modelit Webservice Toolbox cannot do  
At this point the Webservice Toolbox cannot port complete Matlab 

applications to web based applications, nor does it contain a web based 
equivalent of Mat lab Guide. The toolbox can be used to create webservices 

that implement GUI callbacks, but the GUI front end must be 
implemented in HTML, JavaScript, PHP or the like.  

1.3  Set ting up of a web - based solution  

Figure 2 shows a typical se tup of a web based solution and shows the 
components that are involved and how they interact. The figure shows 

that a web based solution uses various components, like as HTTP -Server, 
a Router, a Local (software)  Firewall, Apache Tomcat, and a Matlab 

compo nent. All these components require attention. The Modelit 
Webservice Toolbox has been developed to the current version over a 
number of years. It consists of a collection of software components , but 

even more so it represents the know -how that is required  to set up stable 
and performing  web based solutions using Matlab. This user guide aims 

to summarize this known -how, and is not limited to Matlab issues only.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 4 

Router

IP=a.b.c.d
(port=8080?)

PC

IP=e.f.1.100
(Fixed IP)

PC

IP=e.f.1.2
(DHCP)

Firewall

(IP=w.x.y.z?)

matlabserver

servlet

Matlab 

session #1

Callback 

listening to port 
4444

Server

IP=w.x.y.z
http server

hardware 
component

software 
component

Browser

client 1

Browser

client N

WAN

Matlab 

session #2

Callback 

listening to port 
4445

Matlab 

session #3

Callback 

listening to port 
4446

PC

IP=e.f.1.1
(DHCP)

Logfile

To obtain computational result Web 
server makes GET request to IP 
a.b.c.d on port 8080

Router forwards all request for port 
8080 to LAN IP e.f.1.100

Only designated PC within subnet 
e.f.--.-- recieves requests

Matlabserver servlet writes requests to 
a log file and forwards requests to the 
port with minimum requests in queue. 

Callback deals with requests and 
returns the results

Computational load may be spread 
over multiple Matlab processes on 
multi core machine

users request information from  
web-page on URL w.x.y.z

Firewall verifies that w.x.y.z is on IP 
whitelist

www

lan

server PC

Apache 

Tomcat
Apache Logfile

ok

 

Figure 2 :  Typical setup of a system using the Mod elit Matlab 
Webservice toolbox  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 5 

1.4  Requirements  

Typically , webservice s are  deployed on a dedicated server or on a server 
in the cloud as provided by (for example) Amazon EC2, while the software 
is developed elsewhere. For this reason requirements are listed se parately 

for the development environment and the deployment environment.  
 

Obviously, software can be developed and deployed (or tested) on a single 
computer, provided this computer meets requirements for development 
and deployment. In fact, this user guid e assumes you will be doing this.  

1.5  Requirements for development environment  

To develop a webservice software package ready for deployment the 

following is needed:  
¶ A Windows or Linux computer with Matlab 2 006b or higher installed on 

it ;  
¶ (optional) Matlab co mpiler (*);  
¶ Modelit Matlab Webservice toolbox.  

 
(*) Matlab compiler is not a requirement, but is recommended. Otherwise 

each webservice instance will occupy a Matlab license. In compiled mode , 
multiple webservice instances can run at no additional costs.  

1.6  Requirements for deployment environment  

To deploy this webservice software package you need the following:  
¶ A Windows or Linux machine with Matlab or Matlab Runtime installed 

(*);  
¶ A connection to internet, preferably using a fixed IP-address ;  

¶ Access to any r outers that connect this computer to the internet so 
that you can setup port forwarding;  

¶ Apache Tomcat 6.0 software or higher (version 8 recommended, 

available for free at http://tomcat.apache.org );  
 

(*) Matlab Runtime is obtainable for free at: 
http://nl.mathworks.com/products/compiler/mcr/ . 
Select the version that Matches the Matlab compiler that was used.  

1.7  Difference between trial version and full version of the 
toolbox  

The trial version is full y functional but contains pcode with a limited usage 
time only. The pcode is generated with Matlab 201 3a, but should be 

compatible with Matlab versions 200 6a and above.  

http://nl.mathworks.com/products/compiler/mcr/


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 6 

2  Getting started  

2.1  Contents of the install package  

The install package is a zipfile name d matlabserver.zip (full version) or 

matlabserver_pcode.zip (trial version).  

2.2  Quick install instructions  

This zipfile has two subdirectories:  
¶ matlabserver. This directory including its subdirectories is added to the 

Apache Tomcat installation. See chapter 4. 

¶ matlabcode. This directory including and its subdirectories are added to 
the Matlab path. See chapter 5. 

2.3  Step by step install instructions  

The next chapters explain  the following tasks with step by step 

instructions and verifications:  
 
¶ Installing Apache Tomcat (chapter 3);  

¶ Adding the Modelit Matlab Webservice Component to Apache Tomcat 
(chapter 4)  

¶ Preparing th e Matlab development environment (chapter 5)  
¶ Creating an example Matlab program;  
¶ Configuring the Windows Firewall;  

¶ Setting up port forwarding for a local network.  
 

After completing these tasks the example Matlab program that y ou have 
created will be ready to be called from any internet browser.   



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 7 

3  Installing Apache Tomcat on the Webserver Machine  

3.1  Download Apache Tomcat  

Go to http://tomcat.apache.org  

 

 
 

Navigate to the Tomcat 8.0 download section by selecting Tomcat 8.0 
from th e download menu on the left side of the webpage. Now, under the 

8.0 section download the Windows Service Installer, save it to disk.  
 
Note: the Webservice toolbox requires Tomcat 6.0 or higher  

 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 8 

3.2  Run the Apache Tomcat Installer  

Run the installer. A number of screens will appear.  In general, only the 
screen "Configuration Options" requires input.  
 

The user is prompted for a port number, username and password and the 
path to the Java Runtime Environment (JRE).  

 
¶ The port number determines the port number th at should be used 

to access your Matlab callback function. To change it afterwards, 

rerun the installer or edit the server.xml file in the Tomcat/conf 
directory, see below.  

¶ The username and password are optional. Specify these if you want 
to inspect the s erver status and manage the installed applications 
from a web -console, see "Add/change users in the tomcat -

users.xml" below. Use a User Name of choice.  
¶ In general the JRE will already be installed. If not go to 

www.java.com  and download and install the req uired JRE.  
 

  

  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 9 

  
 

3.3  Verifying the Tomcat Installation  

 
¶ Select ;  
¶ Select "All programs/Apache Tomcat 8.0/Monitor 

Tomcat";  

 
¶ The Tomcat icon becomes visible;  

¶ Initially Tomcat will be in idle mode. Dou ble click the 
icon in the tray. The Tomcat console becomes 
visible;  

¶ Press the start button;  

 
¶ Tomcat is now running;  

¶ The Tomcat console can be closed.  
 

 

Figure 3 : Tomcat Console.  

 

Now verify the installation by typing the follo wing address in the browserôs 
address bar: http://localhost:8080  for the standard installation.  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 10  

 
 

If this screen appears, you have successfully installed Apache Tomcat, and 
you are ready to install the Modelit Matlab Webservice Toolbox as 
described in ch apter 4. 

 

3.4  Changing Tomcat after installation  

3.4.1  Adjusting the Tomcat port by editing the server.xml  

By default Apache Tomcat is configured to run on port 8080. After 

installation the port can be changed by editing the server.xml f ile which is 
located in $TOMCAT_HOME/conf (e.g. C: \ Program Files \ Apache Software 

Foundation \ Tomcat 8.0 \ conf \ ). To change the port change the value 8080 
in the following block of code into the desired port number.  
 

listing of .. \ Tomcat 8.0 \ conf \ server.xml  
 
    <! --  A "Connector" represents an endpoint by which requests are received  

         and responses are returned. Documentation at :  

         Java HTTP Connector: /docs/config/http.html (blocking & non - blocking)  

         Java AJP  Connector: /docs/config/ ajp.html  

         APR (HTTP/AJP) Connector: /docs/apr.html  

         Define a non - SSL HTTP/1.1 Connector on port 8080  

    -- > 

    <Connector port=" 8080 " protocol="HTTP/1.1"  

               connectionTimeout="20000"  

               redirectPort="8443" />  

    <! --  A "Connector" using the shared thread pool -- > 

 

-end of listing -  

3.4.2  Add/change users in the tomcat - users.xml  

To be able to inspect the server status and manage apps from a web -
based console (accessible at http://localhost:8080) a user with a 
password a nd role ómanager-guiô must be defined in the tomcat- users.xml 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 11  

in the Tomcat conf directory. If you did not specify the Tomcat 
Administrator Login during installation you can add this information 

manually.  
 

listing of .. \ Tomcat 8.0 \ conf \ tomcat -users.xml  
 

<tomcat - users>  

<user name="modelit" password="mypassword" roles="manager - gui" />  

<! --  

  NOTE:  By default, no user is included in the "manager - gui" role required  

  to operate the "/manager/html" web application.  If you wish to use this app,  

  you must defi ne such a user -  the username and password are arbitrary.  

-- > 

<! --  

  NOTE:  The sample user and role entries below are wrapped in a comment  

  and thus are ignored when reading this file. Do not forget to remove  

  <!.. ..> that surrounds them.  

-- > 

<! --  

  <r ole rolename="tomcat"/>  

  <role rolename="role1"/>  

  <user username="tomcat" password="tomcat" roles="tomcat"/>  

  <user username="both" password="tomcat" roles="tomcat,role1"/>  

  <user username="role1" password="tomcat" roles="role1"/>  

-- > 

</tomcat - users>  

 
-end of listing -  

 
After restarting Tomcat the Server status and App Manager are accessible 

to the defined user(s).  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 12  

4  Adding the Modelit Matlab Webservice Component 
to Apache Tomcat  

4.1  Copying the Web - inf  directory to your disk  

Unzip the file MatlabServer.zi p to $TOMCAT_HOME \ webapps \   

 
After this, the directory structure should look like this:  
 

 

Figure 4 :  Directory structure after copying matlabserver directory.   

 

This installs a webservice that can be accessed from any browser as:  
127.0.0.1:8080/matlabserver/myExample                  (*)  

 

(*) assuming you installed Tomcat with port 8080 . 
 

See also: ñverifying the servlet installationò (section 4.6 ).  
 
The remainder of this chapter shows how to change the p arameters of the 

servlet. If you are happy with the default settings you may skip this to a 
later date.  

4.1.1  Alternative location of WEB_INF  

In this guide we will assume that you have copied Web_inf to:  

$TOMCAT_HOME \ webapps \ matlabserver \ Web - inf.  
 
As a result the  path  to any Matlab webservice defined on this computer 

will look like:  
 "<IPADRESS: PORT> /matlabserver/<name>".  

 
With <name> a service name that is defined in web.xml.  
 

You may however place the ñWeb-infò folder  anywhere in Tomcats  
ñwebappsò folder. For example, if you copy web_inf to:  

$TOMCAT_HOME \ webapps \ algorithm \ Web - inf  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 13  

Your webservice is accessible as:  
"<IPADRESS: PORT> / algorithm /<name>".  

 
As a special case you may copy ñweb_infò to: 

$TOMCAT_HOME \ webapps \ ROOT\ Web - inf  
In this case your webservice is ac cessible as:  

"<IPADRESS: PORT>  /<name>".  

 
 

 

4.2  Configuring the servlet  

The step above will install a software component known as a servlet . This 
servlet receives http requests on the connector port (for example 8080) 
and forwards these to Matlab callback func tions on one or more ports of 

choice.  
  

The file  
  $TOMCAT_HOME \ webapps \ matlabserver \ WEB-
INF\ lib \ MatlabServer.jar  

contains the java classes used by matlabserver.  
 

The file  
  $TOMCAT_HOME \ webapps \ matlabserver \ WEB- INF \ web.xml  
contains the configuration d ata for the matlabserver servlet that you 

might want to modify.  
 

You can specify the port numbers the servlet forwards its requests to. If 
multiple ports are specified, the incoming requests will be distributed over 
these ports.  

This provides a load balan cing mechanism: The computational load is 
distributed over multiple processes. Typically each Matlab session will 

listen to one port. Ports can be defined in the red area in the listing.  
 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 14  

path 
to/from
WAN

Firewall
(IP=w.x.y.z?)

matlabserver

servlet

Matlab 
session #1

Callback 
listening to port 

4444

hardware 
component

software 
component

Matlab 
session #2

Callback 
listening to port 

4445

Matlab 
session #3

Callback 
listening to port 

4446

Logfile
Matlabserver servlet writes requests to 
a log file and forwards requests to the 
port with minimum requests in queue. 

Callback deals with request and 
returns results

Computational load may be spread 
over multiple Matlab processes on 
multi core machine

Firewall on webserver machine verifies 
that sender is in allowed list

 
 
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 15  

listing of .. \ Tomcat 8.0 \ webapps \ matlabserv er \ Web - inf \ web.xml  
 

<?xml version=ò1.0ò encoding=òISO- 8859 -1ò?> 

 

<web-app xmlns=òhttp://java.sun.com/xml/ns/javaeeò 

   xmlns:xsi=òhttp://www.w3.org/2001/XMLSchema-instanceò 

   xsi:schemaLocation=òhttp://java.sun.com/xml/ns/javaee 

http://java.sun.com/xml/n s/javaee/web -app_2_5.xsdò 

   version=ò2.5ò> 

 

  <display - name>Modelit Matlab server</display - name> 

  <description>  

          Connecting java servlets with Matlab  

  </description>  

 

<servlet>  

 

        <servlet - name>servlet1 </servlet - name> 

        <servlet - cla ss>nl.modelit.matlabserver.MatlabServlet</servlet - class>  

 

 <init - param>  

  <param - name>port</param - name> 

  <param - value> 4444,4445 ,192.168.3.100: 4444 </param - value>  

 </init - param>  

 

 <init - param>  

            <param - name>mode</param - name> 

            <param - val ue>normal </param - value>  

        </init - param>  

 

 <init - param>  

            <param - name>log </param - name> 

            <param - value> 2000 </param - value>  

        </init - param>  

 

 <init - param>  

            <param - name>queue </param - name> 

            <param - value> 4</pa ram- value>  

        </init - param>  

 

</servlet>  

 

<servlet - mapping>  

        <servlet - name>servlet1 </servlet - name> 

        <url - pattern> /myExample </url - pattern>  

</servlet - mapping>  

 

 

</web - app>  

     

-end of listing -  
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 16  

Configurable 

parameters  

Description  

servle t - name  Make sure  

    servlet/servlet -name  
corresponds to:  
    servlet -mapping/servlet -name.  

url - pattern  Specify the path where the url where the webservice will 
be available.  

 
Notes on urlpattern :  

To access the webservice for this example the url tha t 
must be entered is:  
http://localhost:8080/matlabserver/myExample  

  
This is because  the "Web - inf" directory resides in   

"Tomcat 6.0 \ webapps \ matlabserver".  
 
Change the directory name  "matlabserver" to another to 

change the url. For example, if the directory name  
"matlabserver is" replaced by "services" the url 

becomes:  
http://localhost:8080/services/myExample  
 

Move the contents of "Web - inf"  to  
"Tomcat 6.0 \ webapps \ Root \ Web - inf" and the url will 

change to:  
http://localhost:8080/ myExample  

port  Comma separated list with port numbers. Specify a t 
least one port number. External calls will be distributed 
over all specified ports.  

N.B. If no callback is specified for a specific port a 
timeout will occur on the first call. Subsequent calls will 

no longer be directed to this port. Therefore there is  not 
too much harm in specifying more ports than you 
initially need.  

IP address  By default, requests will be forwarded to port number 
specified at ñportò at localhost. To forward requests to 

another physical machine, include the IP address of this 
machine  by prepending the IP address of the alternate 

machine to ñportò (the syntax is IP-address:port).  

mode  "normal" or "debug".  

If debug is specified additional information is written to 
the tomcat8 -stdout.log file in the Tomcat logs directory.  

queue  Maxim um queue length for every port number.  

log  Maximum length of logging message. If the length of a 

request exceeds this number, all characters beyond 
position "log" will not be included in the log file.  

 

http://localhost:8080/matlabserver/Example?arg1=1&arg2=2
http://localhost:8080/matlabserver/Example?arg1=1&arg2=2
http://localhost:8080/matlabserver/Example?arg1=1&arg2=2


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 17  

4.3  Setting up multiple webservices on one computer  

It i s possible to specify different webservices that run on a single machine.  
Adapt the file web.xml in the following way:  
 

listing of .. \ Tomcat 8.0 \ webapps \ matlabserver \ Web - inf \ web.xml  
 

<?xml version="1.0" encoding="ISO - 8859 - 1"?>  

 

<web- app xmlns="http://jav a.sun.com/xml/ns/javaee"  

   xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"  

   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 

http://java.sun.com/xml/ns/javaee/web - app_2_5.xsd"  

   version="2.5">  

 

  <display - name>Modelit matlab server</display - name> 

  <description>  

          Connecting java servlets with Matlab  

  </description>  

 

    <servlet>  

 <init - param>  

  <param - name>port</param - name> 

  <param - value> 4444,4445 </param - value>  

 </init - param>  

 

        <servlet - name>servlet1 </servlet - name> 

        <servlet - class>nl.modelit.matlabserver.MatlabServlet</servlet - class>  

    </servlet>  

 

    <servlet - mapping>  

        <servlet - name>servlet1 </servlet - name> 

        <url - pattern> /myExample </url - pattern>  

    </servlet - mapping>  

 

    <servlet>  

 <init - param>  

  <param- name>port</param - name> 

  <param - value> 4446,4447 </param - value>  

 </init - param>  

 

        <servlet - name>servlet2 </servlet - name> 

        <servlet - class>nl.modelit.matlabserver.MatlabServlet</servlet - class>  

    </servlet>  

 

    <servlet - mapping>  

        <serv let - name>servlet2 </servlet - name> 

        <url - pattern> /yourExample </url - pattern>  

    </servlet - mapping>  

 

 

</web - app>  

     

-end of listing -  
 

4.4  Load balancing  

Load balancing is the process of distributing tasks over different 
computers or (as in the current case) processes. If multiple ports are 

specified in the web.xml (see above) the incoming http requests will be 
distributed over these ports. The Webservice toolbox provides a 
mechanism to implement Matlab callbacks that listen to a specific port 

(see chapt er 6). Multiple Matlab processes can be started, where each 
process contains a callback that listens to one of the ports specified in 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 18  

web.xml. In this way http requests are processed in parallel by different 
Matlab processes. E specially on multi - core processors this increases 

capacity and reduces response times.  
 

Queuing  
Under heavy loads the webservice toolbox will behave as follows:  
¶ The server will first try to find a "free" port to handle a specific 

request, where "free" mean s that the process is not currently waiting 
for a reply on a message that was sent to this port;  

¶ If all ports are "busy" it will add the request to the end of the queue 
with the minimum number of request in it;  

¶ If at the time of a request all queue lengths  exceed a specific number 

(currently fixed at 4) for all ports the server will immediately return the 
request with the message "Server Busy".  

 
 

webserver (out)
@ port 8080

Job 1
(input)

Job 2
(input)

webserver (in)
@ port 8080

callback
@ port 4444

callback
@ port 4445

callback
@ port 4446

webserver (out)
@ port 8080

Job 2
(input)

Job 3
(input)

webserver (in)
@ port 8080

callback
@ port 4444

callback
@ port 4445

callback
@ port 4446

Job 1
(input)

 
 

webserver (out)
@ port 8080

Job 5
(input)

Job 6
(input)

webserver (in)
@ port 8080

callback
@ port 4444

callback
@ port 4445

callback
@ port 4446

Job 3
(input)

Job 2
(input)

Job 4
(input)

Job 1
(input)

 

webserver (out)
@ port 8080

Job 1
(output)

Job 2
(output)

webserver (in)
@ port 8080

callback
@ port 4444

callback
@ port 4445

callback
@ port 4446

Job 6
(input)

Job 3
(input)

Job 5
(input)

Job 4
(input)

 

Figure 5 :  Demonstration how a platoon of jobs propagates through a 
setup of 3 parallel "pipelines". Each queue contains a 

maximum of 4 jobs. If all queues are full, the webservice 
toolbox will bypass the queue (indicated by the dotted arrow) 

and immediate ly return a "no capacity" message.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 19  

4.5  Failover  

When there is no reply to a request that is forwarded to a port, it is likely 
that no callback is listening to this port. In this case, also future requests 
will remain unanswered. For this reason this port is re moved from the list 

of ports that are considered.  
 

Failover recovery  
Removal of a non - responding port is permanent. The only way to restore 
all ports is to restart Apache Tomcat.  

4.6  Verifying the servlet installation  

To verify the servlet installation call th e servlet with for example two 

arguments:  
http://localhost:8080/matlabserver/myExample?arg1=1&arg2=2   

(again replace 8080 with the port number on which Tomcat is running).  
 
The message "no port available" appears because no Matlab session is 

listening to a ny of the in the web.xml defined ports.  
 

 

4.7  Troubleshooting  

 
If you receive a 404 error like in the figure below, the most likely cause is 

that the url you are viewing is not consistent with the settings in web.xml 
(see section 4.2 ). In particular note that the url must be typed case 

sensitive!.  
 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 20  

5  Preparing the Matlab development environment  

5.1  Method 1: use the default startup.m that comes with the 
toolbox  

For a quick try of the toolbox, follow these steps:  
¶ Make sure that the web - inf directory is installed (see chapter 4);  

¶ Locate the directory ñmatlabcodeò in the Modelit Matlab Webservice 
Toolbox install package  ñmatlab server.zip ò (full version) or 
ñmatlabserver_pcode.zip ò (trial version) ;  

¶ Copy the con tents of this directory to a location of your choice;  
¶ Create a desktop icon that starts Matlab in this location;  

¶ Start Matlab from the desktop shortcut and follow instructions.  
 

You may now proceed to ñVerifying the Webservice installation ò (section 
5.3 )  

5.2  Method 2: integrate the toolbox with your existing project  

5.2.1  Installing m - files  

The Modelit Matlab Webservice Toolbox install package is a zip file 

MatlabServer.zip (or matlabserver_pcode.zip for trial version).  
 

The source code i s organized in three directories:  
¶ matlabcode. this directory contains a number of m files that represent 

the core functionality of the toolbox;  

¶ matlabcode/examples. this directory contain example programs as 
used in this guide;  

¶ matlabcode/utils. This direc tory contains utilities that may be useful 
when implementing you own webservices.  

 

These separate directories need to be added to your Matlab path. The 
Matlab command for this is ñaddpathò. It is recommended that you edit 

your Matlab startup.m file so that  it includes the commands that add 
these directories to your path. The toolbox comes with a default startup.m 
that already sets the correct path.  

5.2.2  Setting the static Java classpath for Matlab sessions  

Matlab loads its static Java classpath at startup from t he file 

"classpath.txt". This file is usually located in the directory that is returned 
by the command "matlabroot". Normally Matlab users do not need to 

change the static classpath, but users of the Modelit Webservice Toolbox 
need to add the full path to MatlabServer.jar to this path.  
 

For this purpose the file classpath.txt must be copied from the Matlabroot 
directory to the Matlab startup directory before any edits are made, 

otherwise these edits will affect all users that share the matlabroot.  
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 21  

Note for  Matlab versions 2012b and up:  

As of Matlab version 2012b Matlab ignores any copies of ñclasspath.txtò in 
the Matlab startup directory. Instead Matlab looks for a file called 

ñjavaclasspath.txtò. So the file classpath.txt in Matlabroot must be copied 
to th e Matlab startup directory and renamed to javaclasspath.txt.  

 
 

This section describes two ways to apply these edits. The first way is to 
run a script called "editClasspath.m". The second way is to manually edit 

the classpath file.  
 
Running editClasspath.m  

  
The function "editClasspath.m" reads the file classpath.txt from Matlabroot 

and appends MatlabServer.jar tot the end of the classpath and saves a 
modified copy of classpath.txt  (Matlab 2012b and up: javaclasspath.txt) 
in the startup directory. For most users this is an easy and adequate way 

to edit the static Java classpath.  
 

Proceed as follows:  
¶ Start a Matlab session using the startup directory that you intend to 

use for the project that involves the Modelit Matlab Webservice 
Toolbox;  

¶ Type addpath(<dirN ame>) on the command prompt, where 

<dir Name> is the directory where the files MatlabServer.jar and 
editClasspath.m reside (for example: c: \ Program Files \ Apache 

Software Foundation \ Tomcat 8.0 \ webapps \ ROOT\ WEB- INF \ lib \ );  
¶ Run editClasspath from the command pr ompt;  
¶ Close your current Matlab session and restart Matlab;  

¶ Type "javaclasspath" on the command prompt and check that 
MatlabServer.jar including its path is listed under the Static Java Path.  

 
Matlab versions prior to 2012b: editing the classpath.txt file manually  
 

If for some reason the above does not work for you, for example, you 
have already made modifications to the classpath.txt file that should not 

be made undone, you may manually edit the classpath.txt file.  
 
Proceed as follows:  

¶ Start a Matlab sessi on using the startup directory that you intend to 
use for the project that involves the Modelit Matlab Webservice 

Toolbox;  
¶ Locate the classpath.txt file by typing ñwhich('classpath.txt')ò on the 

command prompt;  

¶ If this file is located in Matlabroot, make a  copy of this file in the 
Matlab startup directory, otherwise your edits will affect all Matlab 

users on your system that share Matlabroot;  
¶ Edit the file classpath.txt by typing "edit classpath.txt";  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 22  

¶ Append the full path to the MatlabServer.jar to the file , this file resides 
in $TOMCAT_HOME \ webapps \ matlabserver \ WEB- INF \ lib \ .  

For example in the default installation add the following line:  
C: \ Program Files \ Apache Software Foundation \ Tomcat 

8.0 \ webapps \ matlabserver \ WEB- INF \ lib \ MatlabServer.jar  

¶ Save classpath. txt in the current directory , i.e. the directory that 
appears after typing pwd on the command line;  

¶ Restart the Matlab session to activate new java classpath;  
¶ Type "javaclasspath" on the command prompt and check that 

MatlabServer.jar including its path is  listed under the Static Java Path.  
 
Matlab versions 2012b and up: editing the javaclasspath.txt file manually  

 
If for some reason the above does not work for you, for example, you 

have already made modifications to the classpath.txt file that should not 
be made undone, you may manually edit the classpath.txt file.  
 

Proceed as follows:  
¶ Start a Matlab session using the startup directory that you intend to 

use for the project that involves the Modelit Matlab Webservice 
Toolbox;  

¶ Locate the javaclasspath.txt fi le by typing ñwhich('javaclasspath.txt')ò 

on the command prompt;  
¶ If this file is not found, rename the file ñclasspath.txtò in Matlabroot to 

ñjavaclasspath.txtò in de startup directory. 
¶ Edit the file javaclasspath.txt by typing "edit javaclasspath.txt";  
¶ Append the full path to the MatlabServer.jar to the file, this file resides 

in $TOMCAT_HOME \ webapps \ matlabserver \ WEB- INF \ lib \ .  
For example in the default installation add the following line:  
C: \ Program Files \ Apache Software Foundation \ Tomcat 

8.0 \ webapps \ mat labserver \ WEB- INF \ lib \ MatlabServer.jar  

¶ Save javaclasspath.txt in the current directory , i.e. the directory that 

appears after typing pwd on the command line;  
¶ Restart the Matlab session to activate new java classpath;  

¶ Type "javaclasspath" on the command pr ompt and check that 
MatlabServer.jar including its path is listed under the Static Java Path.  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 23  

5.3   Verifying the Webservice installation  

Open a Matlab session.  
 
From the Matlab command line, type:  

  
server = createMatlabServer(4444)  

 
You should get something  similar to the following response:  

 
server =  

 nl.modelit.matlabserver.MatlabServer@599d5b  

 

If you get this response, you are ready to create your first Matlab -
webservice. Proceed to chapter 6. 

5.4  Troubleshooting  

¶ Verify that you h ave saved the modified file classpath.txt in the correct 

location by typing: which('classpath.txt') on the Matlab command 

line. Remember that all java classes are cases sensitive;  

¶ Verify that you have restarted Matlab after changing classpath.txt. 
Changes i n classpath.txt take effect after restarting Matlab;  

¶ Verify that you are using Matlab 2008 or later. The Webservice toolbox 

has not been tested with earlier Matlab versions;  
¶ If you obtain the HTTP Status 404 error, verify that  the url you 

entered is consi stent with the url specified under URL pattern in section 
4.2 . Note that the url is case sensitive.  
 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 24  

6  Matlab examples  

 
The full source code for the examples given in this chapter is available in 

the directory ñmatlabcode/examplesò. This applies to the trial version of 
the Webservice toolbox as well.  
 

The Modelit Webservice Toolbox can be used in a variety of ways, but all 
applications come down to a front -end making a request followed by the 

backend responding to the request.  
 
A number of design parameters define how a webservice is set up:  

 

Design 

parameter   

Use  Popular choice  

Request 

method  

The method that the webservice 

should use to extract data from a 
HTTP request. The Matlab Webservice 

Toolbox detects the request method, 
extracts the data using this method, 
and transfers the data to a Matlab 

callback function.  

¶ HTTP GET 

¶ HTTP POST 

Exchange 

format  for 
input  

The convention that is used to 

represent data in the input string. The 
Matlab callback function must decode 

the input string accordingly.  

¶ HTTP GET 

string  
¶ XML 

¶ JSON  
¶ Custom format  

Content type 
for output  

The method that an internet browser 
should use to show the webservice 
response to the user.  

¶ text/html  
¶ text/xml  
¶ application/pdf  

Exchange 
format  for 

output  

The convention that is used to 
represent the output data.  

¶ HTML 
¶ XML 

¶ JSON 
¶ Custom format  

 
It would be abstract and unproductive to give a systematic description of 

all possible options. This manual is limited to a few examples, see the 
table below.  
 

Front end  Backend  
(Mat lab 

Webservice)  

Result  Examples 
in  

Internet browser  Generates  HTML 

Code 

View web pages that 

are generated on 
the fly from Matlab  

Section 

6.1 , 6.3  

Internet browser  Generates PDF 
code  

View a dynami cally 
created PDF file  

Section 6.4  

Remote 
application  with 

Generates XML 
code  

Use results of Matlab 
in remote 

Section 6.2  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 25  

XML interface 

including PHP and 
webpage  

application or web 

page  

Remote M atlab 
application  

Generates a 
serialized Matlab 
structure  

Use computational 
result of webservice 
in Matlab application  

Section 6.5  

 
The possibilities however are endless and the reader is encouraged to 

experiment with new ways  to utilize the toolbox.  

6.1  HTML example  

The code listing below constitutes the basic steps to initialize a 
MatlabServer object that listens to a specific port and invokes a callback 
when a request is made on that port. The basic steps are:  

 
1.  Create a MatlabSe rver object that listens to a specific port;  

2.  Set the callback to be executed when a request is made;  
3.  Start listening to requests.  
 
 

% Create a server on the specified port, port should be a port specified in  

% the web.xml in the matlabserver directory in t he Tomcat root  

server = createMatlabServer(4444);  

  

% Set callback to be executed when server receives a request from client  

set(server, 'ServerInvokedCallback' , @HTMLCallback);  

  

% Start the webservice  

server.startServer;  

 

% Note: A compact alternative f or the lines above is:  

% server=startMatlabServer(4444,@HTMLCallback )  

 

 
The code for this example is found in: 
matlabcode \ examples \ startMatlabServer.m  

 
To run this example, do the following:  

 
1.  Make sure that Tomcat is running;  
2.  If you have verified the Tomc at installation before any Matlab 

function was running (see section 4.6 ), make sure Tomcat is 
restarted before proceeding (simply "stop" and "start" Tomcat, see 

section 3.3 ) . This is because a prev ious timeout might prevent  the 
webservice toolbox to probe the port where the timeout occurred;  

3.  Verify that "4444" is consistent with the settings in web.xml (see 

section 4.2 );  
4.  Start a new Matlab session  

5.  Copy and paste the cod e above to the command line;  
6.  Open an internet browser and type:  

http://localhost:8080/matlabserver/myExample?arg1=1&arg2=2  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 26  

You should now see the following HTML page:  

 
 

The HTML code for this page has been generated by the function 
"HTMLCallback " The m -code for this function is included as an example in 

the toolbox. The code is also listed below. HTMLCallback generates a few 
lines of HTML code, and sets "content type" to "text/html" so that the 
browser interprets the return value as HTML code.  

 
The gener al implementation of any MatlabServer callback function is:  

 
1.  Get the request properties from the ServerEvent . Use event2struct to 

convert the ServerEvent to a Matlab structure, see section 0;  

2.  Set the response properties of the  ServerEvent  and return the 
ServerEvent  to the client by using the sendResponse function, see 

section 0. 
 
 
function  HTMLCallback(obj, event)  

% HTMLCallback -  Callback called by a MatlabServer object for generating a  

% HTML re sponse  

%  

% CALL:  

%     HTMLCallback(obj, event)  

%  

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with query and response information  

%  

% OUTPUT: 

%     No output  

% 

%   Cop yright 2008 - 2013 Modelit, www.modelit.nl  

  

% It's good practice to always surround the callback with try catch  

% and always return an answer to the client  

try  

    % Collect some request information  

    S = event2struct(event);  

     

    % Generate the respo nse  

    response = HTML(S);  

     



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 27  

    % Return response to the client  

    sendResponse(event, response, ...  

        'contenttype' , 'text/html' )  % The MIME type          

catch  me 

    sendResponse(event, errorMessage(me.message), ...  

        'statuscode' , 500, ...         % Statuscode 200: OK  

        'contenttype' , 'text/html' )  % The MIME type  

end  

  

%__________________________________________________________________________  

function  text = HTML(S)  

% HTML -  Make a simple HTML string  

%  

% CALL:  

%  text = HTML(S)  

  

text = { '<html><center>'  

    sprintf( '<h1>%s</h1>' ,datestr(now))  

    sprintf( '<h2>HTTP: %s</h2>' ,S.RequestMethod)  

    sprintf( '<h2>Query: %s</h2>' ,S.RequestQueryString)  

    sprintf( '<h2>From: %s</h2>' ,S.RemoteAddr)  

    '</center></html>' };  

 text = [text{ :}];  

  

%__________________________________________________________________________  

function  text = errorMessage(msg)  

% errorMessage -  Make an HTML error message  

%  

% CALL:  

%  text = errorMessage(msg)  

  

text = { '<html><center>'  

    sprintf( '<h1 >%s</h1>' ,da testr(now))  

    sprintf( '<h2 style="color:red">%s</h2>' ,msg)  

    '</center></html>' };  

text = [text{:}];  

 
The code for this example is found in: 

matlabcode \ examples \ HTMLCallback.m  
 

To stop the example from running (and be ready for the next example) 
apply on the Matlab command line:  
 

>> server.stopServer;  

6.2  XML example  

By replacing " HTMLCallback "  with " XMLCallback " in the example in section 

6.1  we can use the Matlab Webservice Toolbox to implement a webservice 

that returns XML d ata.  
 

To run the example, apply on the command line:  
 
>> server=startMatlabServer(4444,@XMLCallback)  

 

If you view the result in an internet browser you should see:  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 28  

 
 
The code for this example is shown below:  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 29  

function  XMLCallback(obj, event)  

% XMLCallbac k -  Callback called by a MatlabServer object for generating an  

% XML response  

%  

% CALL:  

%     XMLCallback(obj, event)  

%  

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with  query and response information  

%  

% OUTPUT: 

%     No output  

% 

%   Copyright 2008 - 2012 Modelit, www.modelit.nl  

  

try   

    % Collect some request information  

    S = event2struct(event);  

     

    % Return response to the client  

    sendResponse(event, respo nse, ...  

        'contenttype' , 'text/xml' )  % The MIME type  

      

catch  me 

        sendResponse(event, errorMessage(me.message), ...  

        'statuscode' , 500, ...         % Statuscode 200: OK  

        'contenttype' , 'text/xml' )  % The MIME type  

end  

  

%__________________________________________________________________________  

function  text = XML(S)  

% XML -  Make a simple XML  

% 

% CALL:  

%  text = XML(S)  

  

 % Make a simple XML  

  text = sprintf( '<?xml version="1.0" 

?><response><time>%s</time><method>%s</method><fr om>%s</from></response>' , ...  

      datestr(now),S.RequestMethod,S.RemoteAddr);     

  

%__________________________________________________________________________  

function  text = errorMessage(msg)  

% errorMessage -  Make an HTML error message  

%  

% CALL:  

%  tex t = errorMessage(msg)  

  

 text = sprintf( '<?xml version="1.0" 

?><response><error>%s</error></response>' ,msg);  

 

 

The code for this example is found in: 
matlabcode \ examples \ XMLCallback.m  

6.3  HTML example with graph  

The Matlab Webservice  Toolbox contains a numbe r of utilities for 
converting Matlab figures into HTML code.  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 30  

To view an example, activate the callback " FigureCallback"  :  
>> server=startMatlabServer(4444,@ FigureCallback )  

 
In an internet browser the output looks like:  
 

 
 

The code of FigureCallback is in cluded in the toolbox.  
 
This is a simple example with a single graph. Obviously it is possible to 

generate complex html pages with multiple graphs, mixed with other html 
elements. On could even include hyperlinks or other controls in such a 

page that refer  back to the Matlab webservice that created the page and 
thus create interactive pages.  
 
function  FigureCallback(obj, event)  

% FigureCallback -  Callback called by a MatlabServer object for generating a  

% Matlab figure as response  

%  

% CALL:  

%     FigureCa llback(obj, event)  

%  

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with query and response information  

%  

% OUTPUT: 

%     No output  

% 

%   Copyright 2008 - 2013 Modelit, www. modelit.nl  

  

% It's good practice to always surround the callback with try catch  

% and always return an answer to the client  

try   

  

    HWIN = findobj( 'tag' ,mfilename);  

     

    if  isempty(HWIN) || ~ishandle(HWIN)  

        HWIN = figure( 'tag' ,mfilename);  

        peaks;  

        shading interp ;  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 31  

    end  

  

    % Generate the response  

    response = fig2html(HWIN);  

         

    % Return response to the client  

    sendResponse(event, response, ...  

        'contenttype' , 'text/html' )  % The MIME type  

  

catch  me 

    sendResponse(event, errorMessage(me.message), ...  

        'statuscode' , 500, ...         % Statuscode 500: Interval Server Error  

        'contenttype' , 'text/html' )  % The MIME type  

end  

%______________________________________________________________________ ____  

function  text = errorMessage(msg)  

% errorMessage -  Make an HTML error message  

%  

% CALL:  

%  text = errorMessage(msg)  

  

text = { '<html><center>'  

    sprintf( '<h1 >%s</h1>' ,datestr(now))  

    sprintf( '<h2 style="color:red">%s</h2>' ,msg)  

    '</center></h tml>' };  

  

text = [text{:}];  

 

The code for this example is found in: 

matlabcode \ examples \ FigureCallback.m  

6.4  PDF example  

One could use Matlab to create a PDF document on the fly or, as in the 
current example, read an existing  PDF document from disk into a byt e-
array. If the content type is set  to "application/pdf", browsers will display 

the data returned from the webservice as a PDF document.  
 

To view an example, activate the callback " PDFCallback"  :  
>> server=startMatlabServer(4444,@ PDFCallback )  

 

In an inte rnet browser the result is show as:  

 
 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 32  

function  PDFCallback(obj, event)  

% PDFCallback -  Callback called by a MatlabServer object for generating a  

% .pdf file as response  

%  

% CALL:  

%     PDFCallback(obj, event)  

%  

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with query and response information  

%  

% OUTPUT: 

%     No output  

% 

%   Copyright 2008 - 2013 Modelit, www.modelit.nl  

  

try   

    % Generate the response  

    response = re adBytesFromFile(fullfile(pwd, 'MatlabWebserver.pdf' ));  

         

    % Return response to the client  

    sendResponse(event, response, ...  

        'contenttype' , 'application/pdf' )  % The MIME type    

catch  me 

    %In case of error, sent error message in HTM  format  

    sendResponse(event, errorMessage(me.message), ...  

        'statuscode' , 500, ...     % Statuscode 500: Interval Server Error  

        'contenttype' , 'text/html' )  % The MIME type        

end  

%_________________________________________________________ _________________  

function  text = errorMessage(msg)  

% errorMessage -  Make an HTML error message  

%  

% CALL:  

%  text = errorMessage(msg)  

text = { '<html><center>'  

    sprintf( '<h1 >%s</h1>' ,datestr(now))  

    sprintf( '<h2 style="color:red">%s</h2>' ,msg)  

    '< /center></html>' };  

text = [text{:}];  

 
The code for this example is found in: 

matlabcode \ examples \ PDFCallback.m  
 

6.5  Communicate between Matlab sessions  

The Modelit Webservice Toolbox makes it easy to call a Matlab function 
that runs on a remote server from an y Matlab session and integrate the 

results of this call into the client program.  
 
The current example presents the code for the utility "remote_eval" . This 

function is called in an equivalent way as the Matlab built in function 
"feval", but causes the cal led function to execute on a remote machine.  

 
This mechanism opens all kind of useful options, like:  
¶ Calling software modules that require datasets that are not available 

for the client computer because they are proprietary or very large;  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 33  

¶ Protect propriet ary software modules;  
¶ Offload difficult computations to a powerful central CPU;  

¶ Create a multiuser application;  
¶ Centrally manage specific software modules.  

 
The code of remote_eval is given below.  
function  value=remote_eval(url,fp,varargin)  

% remote_eval -  function that should be used on the client computer for  

% remote execution of sepcified function  

%  

% INPUT 

%     url  

%         location of webservice. If empty, use example directory on  

%         localhost  

%     fp  

%         function pointer for functi on to execute  

%     varargin  

%         arguments for function  

%  

% OUTPUT 

%     value  

%         result of function. Type depends on function.  

if  nargin==0  

    %When called with no arguments: test this function.  

     

    %Note that callback must be active in remote Matlab thread. Beware if  

    %testing this example on localhost. Execute next line in SECOND Matlab  

    %session.  server=startMatlabServer(4444,@MatlabCallback)  

     

    %Use utility "remote_eval" to test  

    %example 1  

    value=remote_eval( '' , @max,[999,99,9],[9,99,999])  

    %example 2 (catch error)  

    value=remote_eval( '' ,@max,[999,99,9],[9,99,999,9999])  

    return  

end  

  

if  isempty(url)  

    url= 'http://localhost:8080/matlabserver/myExample?' ;  

end  

  

%Apply convention:  

%-  function and input data  are stored in cell array  

%-  first element of cell array is pointer to function  

%-  next elements are input data  

cmd_array=cat(2,{fp},varargin{:});  

  

%serialize to byte string  

cmdstr=serialize(cmd_array,true);  

  

%call remote counter part  

str=urlread([url,cm dstr(:)']);  

  

%deserialize result  

value=deserialize(str,true);  

  

%verify that result does not originate from catch part  

if  isstruct(value)&&isfield(value, 'identifier' )  

    rethrow(value);  

end  

  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 34  

The code for this example is found in: 
matlabcode \ examples \ rem ote_eval .m  
 

IMPORTANT:  

The function remote_eval will only work if you install the webservice that 
replies to the requests in another  Matlab session. Note the example will 

crash if you use remote_eval to call a webservice that is started in the 
same Matlab session.  

 

To start the webservice that replies to remote_eval, start a Matlab session 
and execute:  
>> server=startMatlabServer(4444,@ MatlabCallback )  

 

The listing of MatlabCallback is given below.  
function  MatlabCallback(obj,event)  

% MatlabCallback -  Callb ack called by a MatlabServer object for  

% implementing a proxy  

%  

% CALL:  

%     MatlabCallback(obj, event)  

%  

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with query and r esponse information  

%  

% OUTPUT: 

%     No output  

% 

%   Copyright 2008 - 2013 Modelit, www.modelit.nl  

  

try   

    % Get the request string  

    S = event2struct(event);  

     

    % Deserialize the request string  

    input=deserialize_v2(S.RequestQueryString,true );  

     

    % Generate the response.  

    % Note: input{1} is function to apply  

    %       inpute{2:end} are arguments to apply  

    output=feval(input{1},input{2:end});  

             

    % Return response to the client  

    sendResponse(event, serialize_v2( output,true));  

catch   

    %In case of error, serialize error data  

    sendResponse(event, serialize_v2(lasterror,true));  

end  

 

The code for this example is found in: 
matlabcode \ examples \ MatlabCallback.m  

 
To run the example start a second Matlab session and execute:  
 
>> value=remote_eval('',@max,[999,99,9],[9,99,999])  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 35  

value =  

 

   999    99   999  

 
  
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 36  

7  Using the Webservice Toolbox with compiled Matlab 
code  

 

7.1  Reason for deployment in compiled mode  

Typically the Matlab Webservice will be used to implement one or multiple  
webservices that run on a 24/7 basis, or to run multiple webservices in 
parallel for increased capacity.  

 
To avoid that each webservice will permanently occupy a Matlab license, 

the Modelit Webservice Toolbox supports compiled Matlab code. In oth er 
words, any mfile that uses the Matlabserver Toolbox can be compiled to a 
standalone exe file. Moreover multiple instances of a standalone 

executable can run in parallel.  
 

Compiling Matlab code to a standalone executable requires the Matlab 
Compiler TM. The Matlab Compiler is a product of The Mathworks, see 
http://www.mathworks.nl/products/compiler/  

7.2  First note: Setting java classpath in the deployment 
environment  

In analogy to the Matlab development  environment, the deployed 
environment requires a modified static java classpath as well. Like in the 

development environment this is done by placing a file classpath.txt 
(Matlab 2012a and before) or javaclasspath.txt (Matlab 2012b and later) 
in the direct ory where you execute your compiled executable.  

 
The utility ñverifyClasspathFileò facilitates the process. The utility checks 

the presence of the file ñclasspath.txtò or ñjavaclasspath.txtò. If not 
present, the utility creates a template by copying the fi le classpath.txt 

from matlabroot/local. This template can then be modified and saved.  
 
function  ok=verifyClasspathFile  

%verify if 'classpath.txt' or 'javaclasspath.txt' (depending on  

%Matlabversion) is available  

  

ok=true; %==> proceed with installing the webservice  

  

%Define USECLASSPATH 

% USECLASSPATH=true ==> file classpath.txt must be available in pwd  

% USECLASSPATH=false ==> file javaclasspath.txt must be available in pwd  

try  

    if  verLessThan( 'matlab' , '8.0' )  

        USECLASSPATH=true;  

    else  

        USECLASSPATH=false;  

    end  

catch  

    %verLessThan does not exist until Matlab version 2008a  

    USECLASSPATH=true;  

end  

  

if  USECLASSPATH 

    fname_required=fullfile(pwd, 'classpath.txt' );  

http://www.mathworks.nl/products/compiler/


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 37  

else  

    fname_required=fullfile(pwd, 'javaclasspath.txt' );  

end  

  

i f  exist(fname_required, 'file' )&&0  

    %No message required  

    return  

end  

  

%Copy classpath.txt from matlab root to template  

fname_source=fullfile(matlabroot, 'toolbox' , 'local' , 'classpath.txt' );  

  

[pth,nm]=fileparts(fname_required);  

fname_template=fullfile( pth,[nm, '_TEMPLATE' , '.txt' ]);  

  

%Create template file. This is a copy of classpath.txt in  

%matlabroot/toolbox/local  

copyfile(fname_source,fname_template);  

  

%Display instructions for sysadmin  

disp( 'No valid classpath file was found.' );  

disp( 'This must be corrected before the webservive can be started.' );  

disp( 'A copy of the system classpath file was saved to:' )  

disp(fname_template);  

disp( 'Expand this file with the path to MatlabServer.jar. Then Rename to:' )  

disp(fname_required);  

disp( ' ' )  

disp( 'Press any k ey to exit program' );  

pause  

ok=false;  %==> stop with installing the webservice  

 

The code for this utility is found in: examples \ verifyClasspathFile.m  

7.3  Second note: prevent the webservice from exiting  

If a function that installs a webservice using the Model it Webservice 
Toolbox is called from the Matlab command window (in other words: in 

the development environment), the webservice will remain active until 
Matlab is closed.  
 

If the same function is compiled to a standalone executable and ran, the 
webservice will remain active until the function closes, which might be 

immediately after the webservice is posted. Obviously, this is not what we 
want, therefore some code must be added that prevents the function from 
closing.  

 
This  can be done by including an infi nite loop after the webservice is 

posted as in the following code snippet:  
 
%Start loop to prevent the program from returning to cmd window. Everry 15  

%minutes, display a status update in the console  

while  1 

    disp(sprintf( '%s:  #calls: %d   #errors: %d   Last call: %s' , ...  

        datestr(now),N,E,datestr(TCALL)));  

    pause(900) %wait 15 minutes  

end  

 

Another way might be to post a figure as in the code snippet below. 
Matlab will not exit before the user closes the figure.  
 
HWIN=figure( 'Name' , 'My Modelit  webservice' , ...  

    'Menubar' , 'none' , ...  

    'closereq' ,@donotkill, ...  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 38  

    'Numbertitle' , 'off' , ...  

    'dock' , 'on' );  

hmenu=uimenu(HWIN, 'Label' , 'Options' ); %to activate docking  

uimenu(hmenu, 'Label' , 'Close webservice' , 'callb' ,{@removeWindow,HWIN});  

%__________________________________________________________________________  

function  donotkill(obj,event)  

warndlg({ 'Use menu "Close webservice" to stop the webservice' }, ...  

    'Prevent accidental close' , 'modal' );  

%________________________________________________ __________________________  

function  removeWindow(obj,event,HWIN)  

if  strcmp( ...  

        questdlg( 'This will end the webservice. Continue?' , ...  

        'End application' , ...  

        'Yes' , 'No' , 'No' ), ...  

        'Yes' )  

    delete(HWIN);  

end  

7.4  Code example  

The code below combines the two notes listed above. The example may 

be compiled with the command:  
 

mcc -m -C -d exe_webserver installwebservice  
 
This results in an ñ.exeò and ñ.ctfò file. These two file may be placed in any 

directory of the machine that wi ll run the webserver. On this machine the 
Matlab runtime library as found 

http://nl.mathworks.com/products/compiler/mcr/  must be installed as 
well.  
 

Also Tomcat Apache (see chapter 3 for installation instructions) and the 
MatlabServer.jar file (see chapter 4 for installation instructions) must be 

present on this machine.  
 
function  installwebservice  

%entrypoint of webservice. This module wil l install the webservice.  

  

%compile command (save results in directory "exe_webserver"):  

%mcc - m - C - d exe_webserver installwebservice  

  

%Assist end users with setting the classpath right  

if  ~verifyClasspathFile  

    return  

end  

  

%Define some globals to k eep track of the webservice status  

global  N      %total number of calls  

global  E      %total number of errors  

global  TCALL  %instant of last call  

  

N=0;  

E=0;  

TCALL=now;  

  

% Create a server on the specified port, port should be a port specified in  

% the web .xml in the matlabserver directory in the Tomcat root  

server = createMatlabServer(4444);  

% Set callback to be executed when server receives a request from client  

set(server, 'ServerInvokedCallback' , @webserviceCallback);  

% Start the webservice  

server.start Server;  

  

%Start loop to prevent the program from returning to cmd window. Everry 15  

%minutes, display a status update in the console  

http://nl.mathworks.com/products/compiler/mcr/


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 39  

while  1 

    disp(sprintf( '%s:  #calls: %d   #errors: %d   Last call: %s' , ...  

        datestr(now),N,E,datestr(TCALL)));  

    pause(900)  

end  

%__________________________________________________________________________  

function  webserviceCallback(obj, event)  

% webserviceCallback -  Callback called by a MatlabServer object  

% 

% CALL:  

%     webserviceCallback(obj, event)  

% 

% INPUT:  

%     obj:  

%         handle to the MatlabServer object which triggered the callback  

%     event:  

%         ServerEvent with query and response information  

% 

% OUTPUT: 

%     No output  

% 

% Copyright 2008 -  2015 Modelit, www.modelit.nl  

  

global  N      %total n umber of calls  

global  E      %total number of errors  

global  TCALL  %instant of last call  

  

% It's good practice to always surround the callback with try catch  

% and always return an answer to the client  

try  

    N=N+1;  

    TCALL=now;  

    % Collect some requ est information  

    S = event2struct(event);  

    % Generate the response  

    response = HTML(S);  

     

    % Return response to the client  

    sendResponse(event, response, ...  

        'contenttype' , 'text/html' ) % The MIME type  

catch  me 

    E=E+1;  

    sendRe sponse(event, errorMessage(me.message), ...  

        'statuscode' , 500, 'contenttype' , 'text/html' ) % The MIME type  

end  

%__________________________________________________________________________  

function  text = HTML(S)  

% HTML -  Make a simple HTML string  

% 

% CALL:  

% text = HTML(S)  

  

disp(S.RequestQueryString);  

  

GETArguements = parseQueryString(S.RequestQueryString);  

for  k=1:length(GETArguements)  

    input.(GETArguements(k).name)=GETArguements(k).value;  

end  

  

%Verify input arg "x" was specified  

if  ~isfield(inpu t, 'x' )  

    error( 'Input argument "x" is required' ); %==> jump to catch  

end  

    

%Verify input arg "y" was specified  

if  ~isfield(input, 'y' )  

    error( 'Input argument "y" is required' ); %==> jump to catch  

end  

  

text = { '<html><center>'  

    sprintf( '<h1>%s</h1 >' ,datestr(now))  

    sprintf( '<h2>HTTP: %s</h2>' ,S.RequestMethod)  

    sprintf( '<h2>Query: %s</h2>' ,S.RequestQueryString)  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 40  

    sprintf( '<h2>From: %s</h2>' ,S.RemoteAddr)  

    sprintf( '<h2>CPA: %s</h2>' , ...  

    num2str(addition(str2double(input.x),str2double(in put.y))))  

    '</center></html>' };  

text = [text{:}];  

%__________________________________________________________________________  

function  text = errorMessage(msg)  

% errorMessage -  Make an HTML error message  

% 

% CALL:  

% text = errorMessage(msg)  

text = { '<h tml><center>'  

    sprintf( '<h1 >%s</h1>' ,datestr(now))  

    sprintf( '<h2 style="color:red">%s</h2>' ,msg)  

    '</center></html>' };  

text = [text{:}];  

%__________________________________________________________________________  

function  result = addition(x,y)  

r esult = x+y;  

  

The code for this example is given in: 

matlabcode \ examples \ installwebservice.m  

8  Programming reference  

 
All functionality of the Modelit Matlab Webservice is accessed through 2 

objects:  
the MatlabServer object and the ServerEvent object. The  is created by 
the toolbox function "createMatlabServer", while the ServerEventObject is 

passed on as an argument to any callback that is triggered by the by an 
internet request.  

8.1  createMatlabServer  

The MatlabServer Object listens to a port to requests from the 

MatlabServer servlet. If a request is made by the servlet a user defined 
callback can be triggered that handles the request and response.  
 

Constructor:  
Matlab 

code  
obj= createMatlabServer(port)  

Input  port  A port number to which the object is listening . This 
argument must correspond to one of the ports specified 
with the ñportò property in the web.xml script (see 

section 4.2 ).  
Output  obj  The MatlabServer object that has been created.  

Notes  Use createMatlabServer(port) to c reate a MatlabServer.  

 

Methods:  
Matlab 

code  
startServer(obj)  

Input  obj  The MatlabServer object.  
Output  This command generates no output.  

 
Matlab 

code  
stopServer(obj)  

Input  obj  The MatlabServer object.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 41  

Output  This command generates no output.  

 
Fields :  

Usage: value = get(obj, fieldname)  

  set(obj, fieldname, value)  

port  

The port number to which the object listens. This argument must 

correspond to one of the ports specified with the "port" property in the 
web.xml file (see section 4.2 ).  
 
ServerInvokedCallback  

A Matlab function handle. This function is called when a request is made 
on the port the MatlabServer is listening to. Like any Matlab callback, the 
callback is triggered with at least 2 arguments. Only the second o f these, 

referred to as " ServerEvent  object" is relevant in the present context.  
 

 
Example Matlab code:  

server= createMatlabServer(4444)  

set(server,' ServerInvokedCallback',@myCallBack)  

server.startServer;  

 

8.2  ServerEvent Object  

The callback of the Matlab Server object is triggered when a request is 
made by the servlet. The callback is called with the standard Matlab 

callback arguments: An object  and an event . For processing only this 
ServerEvent object is relevant. It contains the request information and 

can be used to set the response.  
 

All interaction with the ServerEvent Object through the following methods 
:  
¶ getInputString  

¶ event2struct  
¶ sendResponse  

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 42  

Methods:  
 

Matlab 
code  

S = event2struct(event)  

  

Convert a ServerEvent to a Matlab structure  
Input  

  
eve nt  ServerEvent with fields:  

Output  S RequestQueryString  Char string with the query string 
that is contained in the request 
URL after the path  

  RequestMethod  
 

This field is any of GET, POST, 
PUT, OPTIONS or DELETE  

 
Note: More information about 

HTTP metho ds can be found here . 
  RemoteAddr  Char string containing the IP 

address from where the HTTP 
request was made  

  RequestBody        Char string containing the bod y of 
the HTTP request.  
Note: The body is empty for HTTP 

get requests.  
  RequestContentType  Char string with the MIME type of 

the body of the request.  
 

Note: More information about 
MIME methods can be found here . 

 
 

Matlab 

code  
sendResponse(event, data, varargin)  

  

Send response to client  
Input  

  
event  The nl.modelit.matlabserver.ServerEvent.  
data  String or int8 array with data to send  

 
The input argument for this method is a string or 

an int 8 array. Using the 
nl.modelit.matlabserver.Utils.readBytesFromFile(file
name) and setting the correct Response MimeType 

(e.g. filename is a .pdf file and MimeType is 
ñapplication/pdfò causes the webbrowser to show 

the a .pdf file.  
varargin  parameter value  pairs, possible values:  

      -  statuscode (default 200)  
         HTTP statuscode  
      -  contenttype (default 'text/html'  

         data MIME type  
 status  Number with the statuscode for this response.  

E.g. code 200 for OK.  
 

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://en.wikipedia.org/wiki/Internet_media_type


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 43  

Note: More information about HTTP statuscodes 

look here . 
 

 contenType  the response  content type  
 
String with the MIME type of the response.  

Setting this value to for example ótext/htmlô or 
ótext/xmlô enables the browser to correctly deal with 

the content.  
 
Note: More information about MIME methods can 

be found here . 
 
 
 

Matlab 
code  

value = obj.getArg()                   

 

Input  obj  The nl.modelit.matlabs erver.ServerEvent.  
Output  value  java.lang.String Error! Bookmark not defined.  with the query 

string or body (in case of a HTTP Post request).  
Notes  This method is deprecated, use getRequestQueryString or 

getRe questBody instead.  

 

8.3  Troubleshooting  

8.3.1  Java exception  

The following error may occur when you try to start a MatlabServer twice 
within a single Matlab session.  
  
java.net.BindException: Address already in use: JVM_Bind  

Exception in thread "Thread - 18" java.lan g.NullPointerException  

 at nl.modelit.matlabserver.MatlabServer$Caller.dolisten(MatlabServer.java:53)  

 at nl.modelit.matlabserver.MatlabServer$Caller.run(MatlabServer.java:36)  

 

In this case you should restart the Matlab session.  

8.4  Callback cannot be reached for specific ports  

It is important that you first start the Matlab Webservice object(s) before 

you hit the monitor Tomcat button. Once Tomcat is active it attempts to 
forward incoming calls to the ports that were specified in web.xml (see 

section 4.2 ).  
 

If Tomcat receives no answer from a specific port it will conclude that no 
process is listening to this port and will disable this port for the remainder 
of the session.  

 
You will need to stop and start Tomcat to pick up any po rts that have 

been disabled by the mechanism described above (see Figure 3).  

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://en.wikipedia.org/wiki/Internet_media_type


www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 44  

9  Windows Firewall Configuration on the Webservice 
Machine  

9.1  Configuration on Windows XP  

Below you will find screen dumps that illustrate how to configure t he 

firewall on Windows XP Service Pack 2. For Windows 7 please refer to 
section 9.2 . 

9.1.1  Opening a port  

Go to the Control Panel and start the Windows Firewall dialogue.  
Use "Add Port" to allow messages to be passed on to a specific  port.  

In our example we open port 8080.  
 

 
Press <Add Port>  
 

 
Specify (any) name  
Specify port  number  

Press <Change Scope>  
 

 
Specify a list of IP numbers that will 
have access to the webservice.  

 

 

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 45  

 
 

9.1.2  Restricting access  

Enter all IP numbers. Note that  these must be separated by with comma's 

and avoid typing blanks.  

9.1.3  Adding a range of IP - addresses (subnet mask)  

Example 1  
Suppose you want to add any ip address that matches:  
     AAA.BBB.CCC.*  

In this case add the following entry in the custom list  
    AAA.BBB.CCC.0/255.255.255.0  

 
Example 2  

Suppose you want to add any ip address that matches:  
     AAA.BBB.*.*  
In this case add the following entry in the custom list  

    AAA.BBB.0.0/255.255.0.0  
 

Note:  
Once you have entered and saved a specific ip address such  as:  
     AAA.BBB.CCC.DDD  

Next time you open the dialog you may see:  
    AAA.BBB.CCC.DDD/255.255.255.255  

This is the equivalent subnet mask.   

9.1.4  Active settings  

It is recommended to maintain a separate table of IP settings and users in 
your webservice deploym ent plan as well as a string to be entered in the 
XP firewall console.  

IP address  User  

123.123.123.0/255.255.255.0  All in company 1  

124.124.124.124  Company 2  

  

  

 
Complete string to be entered, note comma separation:  

123.123.123.0/255.255.255.0,124.12 4.124.124  
 
-  Do not include any spaces in the string above.  

-  Note that windows may append "/255.255.255.255" if subnet mask is 
omitted.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 46  

9.2  Configuration on Windows 7  

9.2.1  Interactive setup  

The procedure to configure the firewall on Windows 7 involves the 
followin g steps:  

 
¶ Go to windows Firewall;  

¶ Go to Advanced settings;  
¶ Add rule for incoming connections;  
¶ Press "New rule";  

¶ A window with 4 radio buttons opens;  
¶ Select  Port (Next);  

¶ Select TCP and Specific local port (Next);  
¶ Allow connection (Next);  

¶ Check boxes Domain , Private and Public (Next);  
¶ Specify Name (Complete);  
¶ Now the new rule appears in the list;  

¶ Select this rule and press "Properties";  
¶ A tabbed window appears;  

¶ Select the tab "Reach";  
¶ Specify all external IP addresses that have access.  

9.2.2  Command line setup  

The interactive setup can be troublesome  if many IP addresses are 
whitelisted, especially because the WIN 7 firewall requires one to specify 

all allowed whitelisted IP addresses one by one, and does not allow 
pasting a range of IP addresses, as is possible in the XP firewall interface.  

 
A work around for this is to use the windows netsh command from  a dos 
box.  

¶ Open a command window  
¶ Paste and execute the "netsh" command that is stored in a separate 

webservice deployment plan  
 
An example if a "netsh" command  is given below:  

 
netsh advfirewall firewall add rule name=MYRULE  dir=in localport=8080  

protocol=tcp  action=allow remoteip= 111.111.111.111 ,222.222.222.222  
  
This command will add (not overwrite!) a rule name "MYRULE" and 

whitelist ip addresses 111.111.1 11.111 and 222.222.222.222 for port 
8080.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 47  

10  Setting up the TCP/IP configuration on the server  

10.1  TCP/IP properties  

To be able to set up port forwarding, it is required that the computer that 

runs the webservice, has a fixed IP address. This makes it possible t o 
forward any request that comes in at the router to the server machine.  

 
In some networks each machine gets its IP address automatically from the 
router in a range (for example) starting at 192.168.1.2. This mechanism 

is called DHCP.  
 

It is recommended to  fix the IP address of the webserver machine on an 
address that is outside the DHCP range. In our example we use the fixed 
address "192.168.1.100". This address must correspond with address 

configured in the port forwarding option, see chapter 3.4.1 .  
 

Note: If your router supports "bind IP to Mac Address" we recommend 
using this option (see section 11.2 ). In this case you may skip this 
chapter.  

 
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 48  

 

10.2  Verifying TCP/IP properties  

Open a DOS prompt and enter the command "ipconfig -all".  

Verify that IP address is equal to the address specified in the previous 
step.  
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 49  

 
 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 50  

11  Setting up port forwarding on the network router  

 

11.1  Introduction  

There are many network routers available on the market. Mos t of them 
have a console that can be reached through a specific IP -address in the 

local area network. As an example, this manual describes the procedure 
for a specific  router. For other routers the procedure will be similar but 
not identical. The procedur e may require some experimenting. If you 

experience any difficulties, you may search the Internet with keywords 
"port forwarding" or "port redirection" combined with the name of your 

hardware.  

11.2  Step 1: disable DHCP on the server  

It is recommended that DHCP is switched off on the machine that runs the 
Matlab Webservice (see chapter 10 ). Some routers support the function 
"Bind IP to Mac", in this case you can leave DHCP on the target machine 

switched "on" and assign a fixed IP addr ess from the router console.  

11.3  Example: setting up port forwarding on Draytek Vigor 2920  

¶ Go to the web -console of your router. Usually this is located at: 
http://192.168.1.1/  

¶ Add a new port redirection rule. Specify the following:  

¶ Mode : This is a Draytek spe cific option, select single;  
¶ Service name : any name may be specified here;  

¶ Protocol : select TCP  
¶ WAN IP : This is a Draytek specific option. Select All, Wan 1 or Wan 

2. If you specify "All" your webservice will be reachable trough 2 

ISP's. This allows users to apply failover: If the first IP does not 
respond, they can try the second one;  

¶ Public Port : select the port number that people will use to reach 
your webservice;  

¶ Private IP : specify the IP of the machine that runs the webservice;  
¶ Private Port : specify t he port number that matches the parameter  

"Connector port" as specified in section 3.4.1 . In the example 

"Public Port" matches "Private Port" but this is not required.  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 51  

 

Figure 6 :  Setting up Port Redi rection on a Draytek router.  

11.4  Advanced topic: Setting up redundant servers and WAN's  

If you need to meet rigid availability requirements, it might be a good idea 

to use redundant WAN connections and/or redundant servers. The latter 
also helps to increase ca pacity of the webservice.  
 

Figure 7 shows an economical way to do this. For this you need:  
¶ 2 independent ISP's, for example via cable and ADSL;  

¶ a dual WAN router.  
 
The configuration shown in Figure 7 mak es ..  



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 52  

Router

server 3

server 1

server 2

server 4

IP address 1

IP address 2

port 8080

port 8081

 

Figure 7 :  Redundant WAN and server setup  

 
An alternative configuration would be to use two separate routers  

Router 1

server 1

server 2

Router 2

IP address 1

IP address 2

port 8080

port 8081

 



www.modelit.nl  Modelit Matlab Webservice Toolbox, User Guide  

 

 53  

12  Verifying the Matlab Webservice installation  

12.1  Verification with a web bro wser  

To call the webservice simply type the URL, port, directory and arguments 

of the webservice in the address bar of the web browser. For example:  
 

http://localhost:8080/TripCast?id=123456&fromlat=52.66&fromlng=4.69
&tolat=51.61&tolng=5.33&depart=1&time=2 0090607180000&reliability=
0 

 
To call the webservice from a remote location (a computer outside  your 

local area network or a smartphone) simply type the URL, port, directory 
and arguments of the webservice. For example:  
 

http://85.149.xxx.xxx:8080/TripCast?id=123456&fromlat=52.66&fromlng
=4.69&tolat=51.61&tolng=5.33&depart=1&time=20090607180000&relia

bility=0  

12.2  Verification with Firefox Poster  

Firefox Poster is a developer tool for interacting with web that lets you 
make HTTP requests such as HTTP GET, HTTP POST and HTTP PUT. Poster 
is useful to test a webservice that handles HTTP POST request.  

 
Poster can be in stalled in Firefox from: 

https://addons.mozilla.org/nl/firefox/addon/poster/  
 

 

http://85.149.xxx.xxx:8080/TripCast?id=123456&fromlat=52.66&fromlng=4.69&tolat=51.61&tolng=5.33&depart=1&time=20090607180000&reliability=0
http://85.149.xxx.xxx:8080/TripCast?id=123456&fromlat=52.66&fromlng=4.69&tolat=51.61&tolng=5.33&depart=1&time=20090607180000&reliability=0
http://85.149.xxx.xxx:8080/TripCast?id=123456&fromlat=52.66&fromlng=4.69&tolat=51.61&tolng=5.33&depart=1&time=20090607180000&reliability=0
https://addons.mozilla.org/nl/firefox/addon/poster/





