
Modelit
Elisabethdreef 5

4101 KN Culemborg
+31(345)531717

info@modelit.nl
www.modelit.nl

Modelit Layout
Manager for Matlab

Version:
Date:

2008_01
August 13, 2008

Version: 2008_01
Date: August 13, 2008

Manual: Modelit Layout Manager for Matlab
Author: Nanne van der Zijpp, Kees-Jan Hoogland

Copyright: 2008, Modelit
Contact: info@modelit.nl

www.modelit.nl

ii

http://www.modelit.nl/
mailto:info@modelit.nl

1 Introduction .. 1
1.1 Introducing the Modelit Layout Manager for Matlab ... 1

1.1.1 Gui's en Guide .. 1
1.1.2 Complex GUI's: Layout Manager .. 1
1.1.3 Layout Manager features ... 1

1.2 Comparison with the Matlab uipanel object ... 2
1.3 Help ... 2
1.4 System requirements ... 3
1.5 How to proceed from here ... 4

2 Installation ... 5
3 Getting started with the Layout Manager ... 6

3.1 Step 1: Positioning frames ... 6
3.1.1 A GUI example .. 6
3.1.2 Creating the GUI example ... 8
3.1.3 Specifying frame attributes: lm_createframe .. 9

3.2 Step 2: Positioning objects in a frame .. 10
3.2.1 Specifying object attributes: lm_linkobj and lm_arrange 11

3.3 Summary ... 12
4 Layout Manager Reference Manual ... 13

4.1 lm_arrange .. 13
4.2 lm_childframes .. 17
4.3 lm_createframe .. 17
4.4 lm_deleteframe .. 19
4.5 lm_deleteframecontent .. 19
4.6 lm_divider .. 19
4.7 lm_doubleframe .. 20
4.8 lm_exitbutton ... 21
4.9 lm_enableonoff .. 22
4.10 lm_exittext .. 22
4.11 lm_framelist ... 23
4.12 lm_frameonoff ... 23
4.13 lm_initaxes .. 24
4.14 lm_innerpixelsize ... 24
4.15 lm_isparent ... 24
4.16 lm_lineprops ... 24
4.17 lm_linkobj ... 25
4.18 lm_linkslider2frame ... 28
4.19 lm_listframeHandles ... 28
4.20 lm_parentframe ... 29
4.21 lm_patchprops .. 29
4.22 lm_pixelsize ... 29
4.23 lm_resize ... 29
4.24 lm_shiftrank ... 29
4.25 lm_sortframes .. 30
4.26 lm_title ... 31

iii

Modelit Layout Manager for Matlab

1 Introduction

1.1 Introducing the Modelit Layout Manager for Matlab

The Modelit Layout Manager for Matlab (in short: Layout Manager) is a tool to position Matlab handle graphic
objects such as uicontrols and axes within a figure. It has been designed for Matlab developers who want to
provide their Matlab applications with intuitive and powerful user-interfaces.

The objectives of the toolbox are:
• to build interfaces that look good on a variety of displays and allow figure resizing;
• to build interfaces in an efficient way;
• to build interfaces in a modular way;
• to support extra features like tabs and sliders.

All objects positions are specified relative to frame objects, using both normalized and pixel coordinates. Frame
objects are nested in hierarchical structure, where each frame may have other frames as their children. When a
figure is created, modified or resized, all frame positions and the object positions are recomputed in a split
second and the new positions are shown instantaneously.

1.1.1 Gui's en Guide

Matlab comes with a useful Wysiwyg editor for designing user interfaces (GUIDE). However, using GUIDE for
building complex or real-time configurable interfaces is not recommended, because the time needed to build an
interface and align all objects increases exponentially with the number of elements included in the interface. This
imposes a natural limit to the complexity that can be achieved. Moreover, it is difficult to build GUIDE interfaces
that can be resized, parameterized, or re-used.

1.1.2 Complex GUI's: Layout Manager

The Modelit Layout Manager takes care of locating and aligning objects in so called "frames". A GUI is made up
of an arbitrary set of frames that are hierarchically organized. Once defined, frames may be exchanged between
applications. This makes it relatively easy to re-use parts of interfaces in new applications.

1.1.3 Layout Manager features

The Layout Manager supports the following features:
• Link Matlab Handle Graphic objects to a frame;
• Absolute, normalized or mixed position definition;
• Aligning objects in a grid;
• Automatic setting of minimal frame size;
• Nesting frames;
• Tabs and sliders;
• Properties "visible" and "enabled" supported at frame level;
• Automatic resizing of GUI's;
• Adjustment of GUI to different window size;
• Inspection of properties and easy access to matlab code (see Figure 1).

The Layout Manager does not do any of the following:
• Change properties of Handle Graphic objects, other than position and enabled status;

1

Modelit Layout Manager for Matlab

• Change contents of axes objects;
• Implement new GUI elements like trees and tables. You need the "Modelit User Interface Components

Toolbox for Matlab" for this purpose.

1.2 Comparison with the Matlab uipanel object

There are a number of parallels between the frame object in the Modelit Layout Manager and the Matlab uipanel
object. Matlab programmers already familiar with uipanels will find it easy to get acquainted with the usage of
frames. Comparing the properties of Matlab uipanel object and the Layout Manager frame object results in the
table below:

Feature uipanel
object

frame
object

position handle-graphic objects relative to parent using units = normalized yes yes
position HG objects relative to parent using units = pixels yes yes
position HG objects relative to parent using units = normalized+pixels no yes
position objects that normally appear in axes, like line and text objects, in an
invisible overlayed axes

no yes

position objects relative to parent using any of the following units: inches,
centimeters, points or characters

yes no

built in support for clipping no yes
built in support for sliders no yes
distribute objects over grid no yes
compute frame size from child objects no yes
compute frame size from child frames no yes
hide frame including children and child frames no yes
disable or enable frame including children no yes
position frame with position vector yes no
position frame using grid layout no yes

1.3 Help

PDF documentation
The current document provides the user guide and reference manual and is provided as a PDF document.

Manual pages
Each function that is a part of the Layout Manager has an extensive manual page that is called by typing "help
function_name".

Interactive
The Layout Manager comes with an interactive tool that analyses the frames and objects that are defined in a
figure and presents these in a tree as shown in Figure 1. This tool is particularly useful for analysing more
complex GUI's.

Note: This tool is implemented in Matlab and uses components of the "Modelit User Interface Components
Toolbox for Matlab". If this toolbox is not installed on your system, the tool will not work.

2

Modelit Layout Manager for Matlab

Figure 1: Frame analysis tool. The tool highlights frames and objects and allows opening the source code at the
point where each frame is defined.

1.4 System requirements

The Modelit Layout Manager is implemented in Matlab, and has been tested with all Matlab versions ranging
from 2006a to 2008a. No undocumented Matlab features have been used, hence the software should also work
with future Matlab versions without any modifications.

Any application based on the Layout Manager can be compiled to standalone applications with the Matlab
Compiler.

The Layout Manager works seamlessly with other toolboxes and subroutine libraries provided by Modelit. Two
toolboxes are particularly useful when building user interfaces:

• Modelit User Interface Components Toolbox for Matlab. This toolbox extends the standard available Matlab
interface elements with tabbed panes, sortable tables, trees and so forth without the need to switch to a
different programming language or complex code;

• Modelit Application Framework for Matlab. This toolbox implements among others an automated link
between datamodel and visualization and undo/redo functionality.

Users who combine the Layout Manager with other Modelit products experience extra synergies. For example: A
separator is part of the UIC-toolbox and is a visual divider between two areas in a figure. When in addition to the
UIC-toolbox the Layout Manager is available, the divider can be made "draggable" just be adding one line of
code. This allows users to change the layout of their interface interactively.

3

Modelit Layout Manager for Matlab

1.5 How to proceed from here

Depending on your needs you may read the following chapters:
• Chapter 2 contains all information for installing the toolbox;
• Chapter 3 is a quick introduction to using the toolbox. After having read this chapter programmers should be

able to build their first application using the toolbox;
• Chapter 4 contains a full reference manual;

4

Modelit Layout Manager for Matlab

2 Installation

Installing the Modelit Layout Manager for Matlab consists of copying the directories included in the m-file
distribution to target directories on your system and including these directories in your matlab path. For
convenience a file install.m is included in the toolbox that sets the path.

The next steps will install the Modelit Application Framework:

1. Unzip the files from the MLM.zip file.
This creates a folder ‘modelit’ with subdirectories.

2. Find and run install.m. This prints matlab code that will include the required directories in your Matlab
path on the console.

3. Copy these lines to the startup.m file
4. Run startup.m or restart Matlab

You may verify the installation by typing:

h=lm_createframe(figure);
lm_createframe(h,'title','left','rank',1,...
'lineprops',lm_lineprops,'minmarges',[10 10 10 10]);
lm_createframe(h,'title','right', 'rank',2,...
'lineprops',lm_lineprops,'minmarges',[10 10 10 10]);
lm_resize;

A figure with 2 visible frames should appear (see Figure 2).

Figure 2: Example

5

Modelit Layout Manager for Matlab

3 Getting started with the Layout Manager

The Layout Manager controls the appearance of an interface in a 2 stage process:
• It determines the position of a number of user defined frames;
• It determines the position of interface components relative to the frame positions and displays them.

3.1 Step 1: Positioning frames

3.1.1 A GUI example

The reasons for using a Layout Manager are best illustrated with a practical example. Consider the GUI shown
in Figure 3. This GUI displays a map and 9 frames with alphanumerical data:
• The figure is organized in 3 columns;
• The left column is split vertically in 6 frames;
• The middle column is not subdivided;
• The right column is split vertically in 3 frames.

The width of the left column should correspond to its contents. If it is too narrow, edit boxes and buttons will not
fit. If it is too wide the column will have an odd appearance with much empty space. The width of the middle
column is flexible as it does not contain any fixed size objects. The width of the right column is flexible to some
extent, but it should have a minimum width to display properly. Figure 4 shows how these requirements work out
if the figure is resized: column 1 and 3 keep their width and the middle column changes in size.

Figure 3: GUI example

6

Modelit Layout Manager for Matlab

Figure 4: GUI example after resize

Not all frames displayed in Figure 3 are needed all the time and users may wish to de-activate unused frames to
free up display space. In this case the expected behaviour is that the freed up space is occupied by the
remaining frames in a logical manner.

Figure 5: GUI example after de-activating unused frames

7

Modelit Layout Manager for Matlab

3.1.2 Creating the GUI example

The example shown in the previous section shows a typical GUI and its expected behaviour. The Layout
Manager provides the tools for building this and similar interfaces in an easy manner.

The GUI shown in Figure 3 is schematized in Figure 6. The schema shows that the frames are organized in a
nested way. Each frame has a parent and potentially one or more children. This nested structure may also be
represented in a more abstract form as a tree, see Table 1. The frame sizes can be controlled with four
attributes per frame:

Frame property
[keyword]

What it controls

split direction
[splithor]

This property determines if child frames will be organized vertically or
horizontally. If this attribute is set to true the child frames will divide the
parent frame in a horizontal direction.

rank property
[rank]

This property determines the relative position of frames within a nest. If the
parent frame is split in a horizontal direction, the frame with the lowest rank
is displayed left. If the parent frame is split vertically the frame with lowest
rank is displayed at the top position.

pixel size
[pixelsize]

This is a 2 element vector referring to the minimal required width in pixels in
the horizontal and vertical direction respectively. NaN may be specified to
tell the Layout Manager to compute the value by adding the sizes of the
child frames.

normalized size
[normsize]

This is also a 2 element vector. The available space in the parent frame
after deduction of the pixel sizes will be distributed proportional to the
specified normalized sizes.

active property
[active]

If this attribute is false the frame and all its child frames will not be
displayed. This is regardless of the active status of the child frames.

These four attributes are sufficient to get started with the Layout Manager. Additional properties will let you
control an interface in more detail, and are described in the reference manual.

8

Modelit Layout Manager for Matlab

frame_1 frame_2 frame_3

frame_31

frame_32

frame_33

frame_11

frame_12

frame_13

frame_14

frame_15

frame_16

Figure 6: Schematic GUI-layout

Table 1: Underlying specification of the example GUI in Figure 5

tree structure split direction rank pixel
size

normalized
size

Active

root frame horizontal 1 [NaN NaN] [1 1] yes
+----frame_1 vertical 1 [NaN NaN] [0 1] no
| +----frame_11
| +----frame_12
| +----frame_13
| +----frame_14
| +----frame_15
| +----frame_16

horizontal

1
2
3
4
4
6

[200 100] [1 0] yes

+----frame_2 not applicable 2 [0 0] [1 1] yes
+----frame_3 vertical 3 [NaN NaN] [0 1] yes
 +----frame_31
 +----frame_32
 +----frame_33

not applicable
1
2
3

[300 100] [1 1]
yes
no
no

3.1.3 Specifying frame attributes: lm_createframe

The frame attributes mentioned in Table 1 are specified when a frame is created with the toolbox function
lm_createframe:

lm_createframe(Parent,Property1,Value1, Property2,Value2,...)

In the current example the properties "rank", "normsize", "pixelsize" and "lineprops" are used. A full description
of all available parameters and their uses is available in the reference manual chapter.
The code below generates the layout shown in Figure 6.

9

Modelit Layout Manager for Matlab

HWIN=figure('pos',[20 20 1000 650],'units','pixels','ResizeFcn',@lm_resize);
hRoot=lm_createframe(HWIN);
h1=lm_createframe(hRoot,'rank',1,'pixelsize',[NaN NaN], 'normsize',[0 1])
for k=1:6
 lm_createframe(h1,'rank',k,...

 'pixelsize',[200 50],...
 'normsize',[0 0],...
 'lineprops',lm_lineprops);

end
h2=lm_createframe(hRoot,'rank',2);
h3=lm_createframe(hRoot,'rank',3);
for k=1:3
 lm_createframe(h3,'rank',k,'lineprops',lm_lineprops);
end
lm_resize(HWIN);

Figure 7: Result of the lm_createframe example.

3.2 Step 2: Positioning objects in a frame

Once the frames are in place, the positions of the objects are specified relative to the position of the frame. The
mechanism that determines the exact position of an object in a figure will be explained using the example in
Figure 8. This example identifies the following parameters (all in pixels):

X: x-position of Lower-Left (LL) corner of innerframe. The innerframe equals the
outerframe after margins are applied. These margins are specified or defaulted
when the frame is created. For now it suffices to know that X is a result of step 1.

Y: y-position of Lower-Left (LL) corner of innerframe.
W: width of inner frame.
H: height of inner frame.
x: horizontal distance between LL-corner of frame and LL-corner of object.
y: vertical distance between LL-corner of frame and LL-corner of object.
w: width of object.
h: height of object.

10

Modelit Layout Manager for Matlab

h

y

W

H

x

w

X

Y
figure
origin

inner
frame
origin

object
origin

yy

xx

Figure 8: Parameters that determine the position of interface components within a figure.

Parameters X, Y, W and H follow from step 1. These parameters are a starting point for the current step that
positions the interface elements.

The position of an object depends on normalized and pixel coordinates. Normalized coordinates define position
and size proportional to the size of the frame. Pixel coordinates define absolute position and size in pixels. The
position of an object is the sum of both, and is computed as follows.

Define:
specified normalized position: [xN,yN,wN,hN]

specified pixel position: [xP,yP,wP,hP]
resulting object pixelposition: [xx,yy,w,h]

Then the object position is computed as follows:
xx= X + xN*W + xP
yy= Y + yN*H + yP

ww= wN*W + wP
hh= hN*H + hP

3.2.1 Specifying object attributes: lm_linkobj and lm_arrange

Two methods can be used to specify the normalized and pixel position properties of an object:
• Specify coordinates explicitly. The position and size of the object are specified explicitly;
• Specify position in grid. The row and column of the object in an imaginary grid are specified. The Layout

Manager takes care of specifying the coordinates.

Note that in the end both methods operate on the same set of attributes. The first method provides more control
while the second method saves programming effort.

Both methods require that the command lm_linkobj is used to specify an object as a child of a frame.

11

Modelit Layout Manager for Matlab

Method Relevant attributes Example
Specify coordinates

explicitly
normpos
pixelpos

lm_linkobj(h,hFrame,...
normpos,[.5,.5,0,0],...
'pixelpos',[0 0 20 10]);

Specify grid position row
col

lm_linkobj(h,hFrame,'row',a,'col',b)
lm_arrange(hFrame)

3.3 Summary

The architecture of the Layout Manager distinguishes properties of the following categories:
• Specified properties. These properties are user-specified and stored as attributes of objects and frames.
• Dynamic properties. These properties are computed by the function lm_resize every time a figure is resized or

one or more elements are changed.

The properties of the second category coincide with the set of properties that one would use to control an
interface if the Layout Manager is not available. Central to the toolbox is the function lm_resize. This function is
responsible to position all frames and objects. This function should be called every time:
• an element is added to the GUI;
• the size of an element is changed;
• the visibility of an element is changed;
• the size of the figure is changed.

For this reason it is recommended to set the figure ResizeFcn to lm_resize. Figure 9 illustrates the process of
computing the dynamic properties as described in this chapter.

Specified
frame

properties:
width & height
(normalized)

width & height
(in pixels)
margins

(in pixels)

lm_resize

Dynamic
frame

properties:
position

(in pixels)

Specified
object

properties:
[xn,yn,wn,hn]
(normalized)
[xp,yp,wp,hp]

(in pixels)

lm_resize

Dynamic
object

properties:
position

(in pixels)

figure
ResizeFcn

Figure 9: Architecture of the Layout Manager Toolbox: the function lm_resize computes dynamic object
properties based on figure size and specified properties.

12

Modelit Layout Manager for Matlab

4 Layout Manager Reference Manual

4.1 lm_arrange

SUMMARY Position child objects of frame in an imaginary grid. Before calling this function the
properties of the child objects must be specified using lm_linkobj. As explained in
the previous chapter. The position of each object is determined by:
• the position of its parent frame;
• its normpos property;
• its pixelpos property.
You may specify these properties separately for each object, but it is far more
efficient to let lm_arrange do this for you. A typical call to lm_arrange looks like this:

hframe=lm_createframe(...)
for row=1:4
 for col=1:3
 h(row,col)=uicontrol(...)
 end
end
lm_linkobj(h,hframe)
lm_arrange(hframe)
lm_resize;

lm_arrange places each object in a cell of an imaginary grid. Therefore each object
must have a "row" and "col” property specified. In the example above these
properties are set in the call to lm_linkobj: this function assigns "row=i,col=j" to any
nonzero element h(i,j).

Below you will find information on how to merge cells to span multiple columns or
rows.

CALL [size,grid]=lm_arrange(hframe,property,value,...)
[size,grid]=lm_arrange(hframe,propertystruct)

13

Modelit Layout Manager for Matlab

INPUT hframe Frame object. This is a handle to an object that is created with a call
to lm_createframe.

Property Default Purpose
LMAR 10 Margin left between grid and innerframe (all margins are in

pixels).
RMAR 10 Margin right between grid and innerframe.
TMAR 15 Top Margin between grid and innerframe.
BMAR 6 Bottom margin between grid and innerframe.
HMAR 5 Horizontal margins between columns of grid. HMAR may be

specified as a scalar or as a vector.
VMAR 1 Margins between rows. VMAR may be specified as a scalar

or vector.
PIXELW Overrule width of innermargins of frame with this value. By

default this value is computed by lm_larrange based on the
margins and the contents of the grid.

PIXELH Overrule height of innermargins of frame with this value. By
default this value is computed by lm_arrange based on the
margins and the contents of the grid.

NORESIZE false If true: Do not compute and set frame size based on its
contents. The default value implies that lm_arrange
computes the size of the frame.

HEQUAL false If true: After computing the width of each column (both in
pixels and normalized coordinates) change these attributes
to their maximum values. The effect is that all columns have
equal width.

VEQUAL false If true: After computing the height of each row (both in
pixels and normalized coordinates) change these attributes
to their maximum values. The effect is that all rows have
equal height.

HNORM false If true: Assign normalized width to each column.
If false: Ignore normalized properties for column width.

VNORM false If true: Assign normalized width to each row.
If false: Ignore normalized properties for row height.

HCENTER 0 This option is used to align objects within a frame. The
property applies to all children that are aligned through a
call by lm_arrange. Note: this option is only used in rare
occasions.
if 0: left align
if 1: center items in horizontal direction
if 2: right align items in horizontal direction
NOTE: if HNORM==1 the HCENTER option is ignored

VCENTER 0 This option is used to align objects within a frame. The
property applies to all children that are aligned through a
call by lm_arrange. Note: this option is only used in rare
occasions.
if 0: top align
if 1: center items in vertical direction
if 2: bottom align
NOTE: if VNORM==1 the VCENTER option is ignored.

14

Modelit Layout Manager for Matlab

INDIRECT
INPUT

Apart from the attributes above that are passed on to
lm_arrange directly, lm_arrange checks a number of
properties of the uicontrol objects that are positioned using
lm_arrange. These properties are stored in the application
data of each object. These objects are set by lm_linkobj for a
group of objects or by setappdata for a single object.

Important!
These properties should be set after the call to lm_linkobj but
prior to the call to lm_arrange using the setappdata command.
This command adds these properties to the application data
of each object.

row,col These properties tell lm_arrange in which cell the object
goes. Usually these properties are set by lm_linkobj.
Objects that do not have a row or col property will be
ignored by lm_arrange.

Normally the row and col property are set in a call to
lm_linkobj(h,h_frame). Typically h represents a matrix of
handles. Element h(i,j) will receive the properties "row=i"
and "col=j".

If you need to make the component spane multiple cells
you must pass multiple rows or columns to a cell. This
cannot be done by a vectorized call to lm_linkobj. Instead
setappdata needs to be called separately for the cell or cells
that are joined .

Example (multiple cell spanning)

lm_linkobj(h,h_frame) ;
%currentlty "col=1" is assigned to h(1,1)
setappdata(h(1,1),'col',[1:3])

pixelpos Pixelpos is a 4 element vector [x,y,w,h] that tells lm_resize
how to compute the position of an object. By default, the
function lm_arrange will set this property by looking at the
extent of each object. The property pixelpos may be set
prior to a call to lm_arrange. For example:

setappdata(h(1,1),'pixelpos',[0 0 200 20]);

In this case will not use the extent of h(1,1) but instead it
will use the width and height components 200 and 20. The
x and y position (in this case [0,0]) will be be overruled by
lm_arrange.

normpos Normpos is a 4 element vector [xn,vn,wn,hn] that tells
lm_resize the normalized position of an object.

If the flags HNORM en VNORM are passed to lm_arrange,
this function will assign these property to each object.
Otherwise the normpos property will be reset to [0 0 0 0].

Unlike pixelpos, normpos cannot be computed from the
extent of an object. You need to set this property for at least
one element.

15

Modelit Layout Manager for Matlab

OUTPUT size=[w,h] The width and height of the virtual grid including the
margins. By default the flag NORESIZE is set to false. In
this case a call to lm_arrange will affect the pixelsize attribute
of a frame in such a way that it equals this computed size,
increased with the margins set by the minmarges attribute.
Normally you do not need this output.

grid
+----x
| +----pixelpos
| +----normpos
+----y
 +----pixelpos
 +----normpos

Coordinates of the grid raster as computed by lm_arrange.
Normally you do not need this output.

Troubleshooting
If you are new to the Layout Manager, you might encounter situations where the results are different from what
you expect. To facilitate troubleshooting, the table below lists a few typical examples where the result might be
different from what one may expect initially and the reason for this.

Desired result Normalize column 1 use both columns for header object.
Code example lm_linkobj(h,hframe);

setappdata(h(1,1),'col',[1,2]);
setappdata(h(1,1),'normpos',[0 0 1 0]);
lm_arrange(hframe,'VMARGE',1,'HMARGE',5,'TMARGE',0,'HNORM',1);

Result/Problem First column is not normalized. Header object not distributed.
Explanation Because the first object is spans 2 columns, its normpos property is not used!

Remedy setappdata(h(2,1),'normpos',[0 0 1 0]);

Desired result Use column 1 and 2.
Code example lm_linkobj(h,hframe);

setappdata(hh,'col',1:2);
lm_arrange(hframe,'VMARGE',1,'HMARGE',5,'TMARGE',0,'HNORM',1);

Result/Problem Uicontrol appears only in column 2.
Explanation Error: Joint space in column 1 and 2 is too narrow, combined with right aligned

text. This makes it look like everything is displayed in column 2 but it is not.
Remedy Make more space available for column1 and 2.

Desired result Plot line in grid using lm_arrange.
Code example hh=line;

setappdata(hh,'pixelpos',[0 0 30 0]);
Result/Problem Line exceeds gridcell.
Explanation lm_resize interprets normpos and pixelpos as [x1 y1 x2 y2 x3 y3 ...] lm_arrange

sets them to [xll yll width height].
Remedy set pixelpos separately after lm_arrange is called.

Desired result Make object N pixels high.
Code example h(r,c)=uicontrol('style,'list',...

lm_linkobj(f,h_frame);
setappdata(h(r,c),'pixelpos',[0 0 N 0]);
lm_arrange(h_frame);

Result/Problem Object height does not change.
Explanation Setting element 3 of pixelpos (this element sets the width).
Remedy Setting element 4 of pixelpos (this element sets the height).

16

Modelit Layout Manager for Matlab

Desired result Object spans full width of frame.
Code example h=uicontrol('style','list')

lm_linkobj(h,hframe,'row',1,'col',1);
%use full width :
setappdata(h,'normpos',[0 0 1 0]);
%set fixed height of object :
setappdata(h,'pixelpos',[0 0 0 200]);
lm_arrange(hfr2,'TMARGE',0,'LMARGE',10,'RMARGE',10);
lm_resize;

Result/Problem Object does not align with right side of frame.
Remedy Add "'HNORM',1" in de lm_arrange call.

Desired result Header spans multiple columns. The columns should not be resized based on
the header. The header should not be clipped to the column it is defined in

Example:
 Timerange
 from to

Code example h(1,5)=uicontrol('style','text','Timerange')
setappdata(h(1,5),'ignorew',true);

Result/Problem The header is left aligned but there is insufficient room for the header.
Remedy set both the "ignorew" and the "keeppixelsize" flag:

%header should not impact column width
setappdata(h(1,5),'ignorew',true);
%column width should not impact header width
setappdata(h(1,5),'keeppixelsize',true);

4.2 lm_childframes

SUMMARY List the child-frames directly below a given frame.
CALL h_frames = lm_childframes(hframe)
INPUT hframe Handle of parent frame (scalar).
OUTPUT h_frames List of handles of child frames.

4.3 lm_createframe

SUMMARY Create a frame. A frame is a visible or invisible panel that is a parent of other
frames, or interface components (or both).

CALL hframe = lm_createframe(property,value,...)
hframe = lm_createframe(hparent,property,value,...)

17

Modelit Layout Manager for Matlab

INPUT hparent Handle to parent. This may be another frame or a figure object.
If no handle is specied lm_createframe uses gcf as the parent object.

property/value pairs
Note: Where possible the Layout Manager uses "true" or "false" for
values where on basis of analogy with Matlab commands one may
have expected "on" or "off". This has been done for reasons of
computational efficiency.

active Default: true. Visibility of this frame and its children. Setting this
value to false tells lm_resize to hide this frame and all its children.

border Default: true. If set to true the frame will be visualized using the
uicontrol/frame object that also stores the frame properties. In
many cases one may not want to visualize the frame this way. For
example when a frame contains an axes this will be obsured by
uicontrol objects. The border will be displayed on the innermargins
of the frame (see Figure 10).

enable This property controls the enabled status of all child objects
enabled=0  display child object with enabled status=”off”
enabled=1  display child object with enabled status=”on”

Note: you may overrule the frame enables status by setting the
"enable" property of individual objects, see lm_linkobj.

lineprops This property is similar to border. If you set this value to
lm_lineprops a shadowed border will be plotted. This border is
plotted using objects of type "line". Unlike uicontrol objects, these
will not obscure axes objects. You may pass arguments to
lm_lineprops to control the appearance of the border. Advanced
users may replace lm_lineprops with a new function for even more
control of the border appearance.

Example:
lm_createframe('lineprops',lm_lineprops);

patchprops This property can be used instead of “lineprops”, and creates a
patch rather than a line object to display the frame. This may be
useful for controlling the background color of a frame without
obscuring any axes objects.

Example:
lm_createframe('patch',lm_patchprops('facec',[1 1 1]))

minmarges minmarges=[left,bottom,right,top] and defines the coordinate
system in which child objects of a frame are plotted (see Figure
10). Also the border of a frame is plotted on the innerframe.

title If a title is specified, it is displayed using a uicontrol object on the
left top of a frame.

pixelsize Size of the frame in pixels. This is a 2-element vector. You may set
this vector to [NaN NaN]. In this case the frame size will computed
from the sizes of the child frames.

normsize Normalized size of the frame. The space that is left after adding up
the pixelsize properties of all child frames is distributed
proportional to the normsize property.

maxpixelsize If normsize is nonzero, the displayed frame size may be higher
than the value in pixelsize. However, the size of a frame will not
exceed the values specified in maxpixelsize. This applies
separately to both dimensions.

normposition Position of top frame relative to the figure in normalized
coordinates. This property only applies when the parent of a frame

18

Modelit Layout Manager for Matlab

OUTPUT hframe Handle to the frame object that is created. This is a uicontrol object
with "frame" as its "style" property. In practice this object has its
"visible" property set to "off" so it is not visible. However, the object
is needed to store the frame properties in a persistent manner.

Outerframe minmarges(4
)

minmarges(1
)

Innerframe minmarges(3)

minmarges(2
)

Figure 10: Child objects within a frame are placed relative to the innerframe. The position of the innerframe is
determined by the 4 element vector "minmarges". All frame boundaries are displayed on the position
of the innerframe.

4.4 lm_deleteframe

SUMMARY Delete a frame and all its child frames and objects. This functions deletes a frame
and its registration with its parent. It also deletes all child objects and calls
lm_deleteframe on all its children.

CALL lm_deleteframe(hframes)
INPUT hframes List of frame handles.
OUTPUT This function does not return any output arguments.
SEE ALSO lm_deleteframecontent

4.5 lm_deleteframecontent

SUMMARY Delete all child frames and objects. This function deletes all child objects and calls
lm_deleteframe on all its children. Contrary to lm_deleteframe it does not destroy the
frame.

CALL lm_deleteframecontent(hframes, h_excepted)
INPUT hframes Frame or frames that must be deleted. All frames must be member

of the same figure.
h_excepted Handles of objects that should not be deleted.

OUTPUT This function does not return any output arguments.
SEE ALSO lm_deleteframe

4.6 lm_divider

SUMMARY Insert a draggable divider. This allows users to change the sizes of frames
interactively using the mouse.

CALL [hframe, jseparator] = lm_divider(hparent,'rank',rankValue,...
 'mode',modeValue)

INPUT hparent Handle of the parent frame. This must be the parent of the two
frames you wish to separate by a divider.

rankValue This value must be between the rank attributes of the two frames

19

Modelit Layout Manager for Matlab

you wish to separate.
modeValue This must be one of the following:

• “proportional”: change the size of all frames when moving the
divider;

• “neighbour”: only change the size of neighbouring frames
when moving the divider.

OUTPUT Usually the output arguments of this function are not needed.
hframe Frame that holds the divider.
jseparator Handle to the divider object.

REMARK This function requires the Modelit User Interface Components Toolbox for Matlab
for creating the divider object.

EXAMPLE

Figure 11: Draggable dividers may be used to separate frames

4.7 lm_doubleframe

SUMMARY Create a frame that can be minimized to a place holder. A call to lm_doubleframe is
equivalent to 3 calls to lm_createframe and creates the following hierarchy:
frame container
+----regular frame (component frame 1)
+----minimized frame (component frame 2)

CALL [h_ItemFrame,h_frame]=...
lm_doubleframe(h_parent,titlestr,outer_frame_opt,inner_frame_opt)

20

Modelit Layout Manager for Matlab

INPUT h_parent parent frame of the frame container.
titlestr title of the frame container.
outer_frame_opt cell array that contains the arguments to be passed on in the call

to lm_createframe for the frame container. These will be appended
to the default properties:
{'normsize',[1 0],...
'pixelsize',[0 NaN],...
'border',0,...
'splithor',0}

inner_frame_opt cell array that contains the arguments to be passed on in the call
to the component container. These will be appended to the
default properties:
{'normsize',[1 1],...
'lineprops',lm_lineprops,...
'active',1}

OUTPUT h_ItemFrame handle of the container frame. This is the frame that holds the
objects.

h_frame handle of the frame container.
SEE ALSO lm_framelist
EXAMPLE

 

Figure 12: A frame that is created using the lm_doubleframe command. The frame
contains a button that toggles between minimized and normal view.

4.8 lm_exitbutton

SUMMARY Add an exit button to a frame. By default this button is placed in the upper right
corner of a frame.

CALL h = lm_exitbutton(hparent,BACKG,callback)
INPUT hparent Handle of parent frame.

BACKG Color for transparant part of button.
callback Additional function to call when frame is closed.

OUTPUT h Handle of the uicontrol that is used as exitbutton.
SEE ALSO lm_exittext, lm_frameonoff
NOTE In many cases the function lm_exittext is preferred as this function prints an "x"

symbol with a callback rather than a button.
EXAMPLE h1 = lm_createframe(gcf);

h2 = lm_createframe(h1,'minmarges',[20 20 20 20],...
 'lineprops',lm_lineprops);

lm_resize;

21

Modelit Layout Manager for Matlab

Figure 13: Frame before adding exit button
lm_exitbutton(h2);
lm_resize;

Figure 14: Frame after adding exit button

4.9 lm_enableonoff

SUMMARY Toggle enabled status of frame.
CALL Enable = lm_enableonoff(option, resize, handle)
INPUT option Imposed enabled status, possible values: on, off or toggle(default).

resize Call lm_resize when done, possible values: true (default) or false.
handle Handle of object that holds framehandle as its userdata. This handle is

used to retrieve the handle of the frame that is enabled or disabled.
OUTPUT enable Resulting enabled status (0 or 1).

4.10 lm_exittext

SUMMARY This function is similar to lm_exitbutton but instead of using a uicontrol-pushbutton, it
prints an "x" in the upperright-corner of the frame. This is convenient when the
frame is fully occupied by an axes that would have been obscured by a button, but
not by a text symbol.

CALL lm_exittext(h_frame,BDCALL,align,str)
INPUT h_frame Frame handle.

BDCALL Function to call when button is pressed.
align Set this parameter to 1 to align the text on the bottom of the frame.

Defaults value is 0.
str String to display. Defaults to "x". Other values to consider: "close",

"cancel" etcetera.
OUTPUT This function does not return any output arguments.

22

Modelit Layout Manager for Matlab

4.11 lm_framelist

SUMMARY This function creates a container for a collection of frames that are arranged
verticallly. If the total height of the frame exceeds the available space, the frames
may be moved using a slider. The function hence constitutes of a viewport for its
vertically arranged child frames. A call to lm_framelist creates the following frame
hierarchy:

frame container
+----viewport frame (handle exported by this function)
| +---- frames to be added afterwards
| +----
| +----
+----slider frame (this frame contains a slider that
 is linked to the viewport)

CALL [h_inner,h_outer] = lm_framelist(hparent,innerOpt,outerOpt)
INPUT hparent Parent frame for frame container

innerOpt Extra options for call to lm_createframe that creates inner frame
(viewport frame). These options should be listed in a cell array.

outerOpt Extra options for call to lm_createframe that creates outer frame (frame
container). These options should be listed in a cell array.

OUTPUT h_inner Handle of inner frame (viewport frame). This handle should be used
when adding new frames.

h_outer Handle of outer frame. This handle can be used to set the active
property of the outer frame.

EXAMPLE h_inner = ... lm_framelist(hparent,{'tag','innerTag'},
{'tag','outerTag'});
define_subframe1(h_inner); %define children
define_subframe2(h_inner);
define_subframe3(h_inner);
define_logo(h_inner);

SEE ALSO lm_doubleframe

4.12 lm_frameonoff

SUMMARY This function is usually specified as a callback of a button in the toolbar that
switches a specific frame on- and off. The handle of the frame that must be toggled
must be stored in the userdata of the button.

CALL active = lm_frameonoff(option,resize,obj)
INPUT option String with possible values:

• “toggle” (default)  toggle active status of frame;
• “on”  show frame;
• “off”  hide frame.

resize Boolean,
1 (default)  call resize function immediately.
0  suspend resize function.

obj Handle of object that stores framehandle in its userdata. Defaults to
"gcbo".

OUTPUT active Boolean (usually not needed)
true  the frame was made visible.
false  the frame was hidden.

SEE ALSO lm_enableonoff

23

Modelit Layout Manager for Matlab

4.13 lm_initaxes

SUMMARY A call to this function sets up an invisible axes that is used to position "line",
"patch", "image" and "text" objects that are positioned by the Layout Manager.

CALL hax = lm_initaxis(HWIN,LAYER)
INPUT HWIN Handle of the window for which pixel axes will be set (defaults to gcf).

LAYER Layer number. If needed, multiple axes objects can be created to
enable plotting in different layers. Frames plotted in the current axes
obscure lines and text objects in other layers. lm_initaxes checks if an
axes for this layer has already been set up. If so the function does not
create a new axes, so there is no harm in calling the function more
than once. Default value is 1.

OUTPUT hax Handle to the axes object that has been created.
EXAMPLE hax=lm_initaxes;

h=text(1,1,'my text','parent',hax);
lm_linkobj(h,hframe,'pixelpos',[10 10 20 20]);
lm_resize;

4.14 lm_innerpixelsize

SUMMARY Change pixelsize property of frame so that the size of the innerframe matches a
given size. This utility is useful if the size of what goes into the frame is known and
one wants to shrink the outer frame so that it exactly fits its contents. The resulting
pixelsize depends on the specified inner-size and the property "minmarges" that is
stored in the frame. See also Figure 10.

CALL Outbordersize = lm_innerpixelsize(hframe, innerborderpixelsize)
INPUT hframe Handle of parent frame.

innerborderpixelsize [Width,Height] 2 element vector containing the size of the
innerframe, in pixels.

OUTPUT outbordersize [Width,Height] Computed pixelsize.
EXAMPLE For an example, see the source code of lm_arrange. lm_arrange calls lm_innerpixelsize

after the dimensions of the frame are computed.

4.15 lm_isparent

SUMMARY Find out if a given frame is child of any of a list of candidate parent frames
CALL istrue = lm_isparent(h, hframes)
INPUT h Frame handle (scalar).

hframes Handles of potential parent frames.
OUTPUT istrue Boolean, true if any of hframes is the parent of h, false otherwise.

4.16 lm_lineprops

SUMMARY This function returns a structure that can be passed to the Matlab "line" command.
If called without arguments it will produce the settings that are needed to plot a
"standard" border. Any property value pair that can be passed to the line command
can also be passed to lm_lineprops. Additionally the argument "shadowed" may be
passed. This argument tells the Layout Manager to plot not one, but two lines. This
results in a shadow effect.

CALL s = lm_lineprops(property, value,...)
INPUT property,value Any line property.

24

Modelit Layout Manager for Matlab

'shadowed', B Boolean,
B==1  apply shadow.
B==0  do not apply shadow.

OUTPUT s A structure that can be passed to the Matlab "line" command (after
stripping "Shadowed" from this structure). Any specified property-
value pair will overrule or add a field in this structure.

s
+----XData (double)
+----YData (double)
+----Color (double array)
+----HitTest (char array)
+----LineWidth (double)
+----Shadowed (double)

SEE ALSO lm_patchprops

4.17 lm_linkobj

SUMMARY This function registers an object as a child of a frame that was created earlier using
lm_createframe. At the same time a number of properties can be set. It is also
possible to set properties individually using the Matlab setappdata command.
lm_linkobj may be called for a single object handle or for a matrix of object handles.
In this case lm_linkobj sets the "row" and "col" properties as used by lm_arrange.

CALL lm_linkobj(h,hframe,property,value,...)
INPUT h Handle of object or matrix of object handles. If h is a matrix the

row and col attribute will be set by lm_linkobj:

lm_linkobj(h,hframe)

is equivalent to:

for row=1:size(hobj,1)
 for col=1:size(hobj,2)
 if hobj(row,col)
 lm_linkobj(h(row,col),hframe,...

 'row',row,'col',col);
 end
 end
end

hframe Handle of parent frame.
property,value Property value pairs. The allowed properties are listed below.

Propertynames are not case-sensitive and it suffices to specify
the first letters of the property name, as long as these letters
uniquely identify the propertyname.

row,col Properties that are used by lm_arrange. Specifying these
properties and calling lm_arrange afterwards will cause lm_arrange
to fill-in the pixelpos and normpos properties. Generally this is the
fastest way to arrange objects.

normpos
pixelpos

Normpos and pixelpos are 4 element vectors [xn,vn,wn,hn] and
[xp,vp,wp,hp] that tells lm_resize the normalized and pixelposition
of an object in the following way:

Consider Figure 15 below.

Suppose the position of the parent frame is:

25

Modelit Layout Manager for Matlab

 [X,Y,W,H]

and the minmarges property is set to:
 [left,low,right,top]

then the position of the inner frame is given by:
 [Xi,Yi,Wi,Hi]= [X+left,Y+low,W-left-right,H-low-top]

The object position is computed as follows:

 objectpos=[x,y,w,h]
 x=Xi + xn*Wi + xp
 y=Yi + yn*Hi + yp
 w=wn*Wi + wp
 h=hn*Hi + hp

visible Boolean value.
0  hide object
1  show object
It may seem strange that this property is specified because
handle graphic objects already have a property "visible". However
in the Layout Manager the visible property is also controlled by
the active status of the frame. Therefore this extra attribute is
needed.

The dynamic (handle graphic) property "visible" is evaluated as
follows by lm_arrange:
object
property
frame
property
visible

0
1

0
'off'
'off'

1
'off'
'on'

enable Like the visible property, the enable property may also be
controlled at frame level. In order to be able to override properties
set at frame level, the enable attribute is available at object level.

The dynamic (handle graphic) property "enable" is evaluated as
follows by lm_arrange:

26

Modelit Layout Manager for Matlab

object
property
frame
property
enable

0
1

0
'off'
'off'

1
'off'
'on'

2
'off'
'inactive
'

3
'off'
'off'

4
'on'
'on'

5
'inactive
'
'inactive
'

clipping Boolean, If this property is set to "true" and property "clipframe"
contains a frame handle, objects that appear outside the
clipframe will be clipped.

clipframe Frame handle, this property works together with the "clipping"
property.

keeppixelsize This property works together with the function lm_arrange. When
this flag is set, lm_arrange will not change the 3rd and 4rd
component of the pixelpos property. See also the documentation
of lm_arrange.

27

Modelit Layout Manager for Matlab

frame. Interactively changing the slider position changes the
frame property "verticalshift" and subsequently calls lm_arrange.
The result is that frame contents are moved up and down, hence
creating the effect of a viewport. If for some reason an object
needs to be excluded from this effect you may specify the
property "keepypos=true". An example where this is useful is an
exit button in the UR corner of a frame.

OUTPUT This function sets the application data of an object and a frame, but does not return
any output arguments.

frame 1

frame 2.1

frame 2.2

objectpos=[x,y,w,h]

framepos=[X,Y,W,H]

inner frame pos=[Xi,Yi,Wi,Hi]

normpos=[xn,yn,wm,hm]
pixelpos=[xp,yp,wp,hp]

figure

Figure 15: Overview of parameters with an impact on object position

4.18 lm_linkslider2frame

SUMMARY Make y-position of frame content dependent on a vertical slider.
CALL lm_linkslider2frame(hslid, targetframe)
INPUT hslid Handle of uicontrol of style "slider".

targetframe Handle of target frame. The contents of this frame can be moved
by using the slider.

OUTPUT No direct output. The slider handle is stored in the target frame in the property
"slider".

4.19 lm_listframeHandles

SUMMARY Retrieve frame handles and frame data for the specified figure.
CALL [FrameHandles, FrameData] = lm_listframeHandles(hfig)
INPUT hfig Figure handle (defaults to gcf).
OUTPUT FrameHandles Nx1 list of frame handles.

FrameData Nx1 struct array with corresponding application data.

28

Modelit Layout Manager for Matlab

4.20 lm_parentframe

SUMMARY Find out to which frame the object with handle h is linked.
CALL hframe = lm_parentframe(h)
INPUT h object handle (scalar).
OUTPUT hframe handle of parent frame, empty if object is not linked to a frame.

4.21 lm_patchprops

SUMMARY This function returns a structure that can be passed to the Matlab "patch"
command. If called without arguments it will produce the settings that are needed to
plot a "standard" transparent patch. Any property-value pair that can be passed to
the “patch” command can also be passed to lm_patchprops.

CALL s = lm_patchprops(property, value,...)
INPUT property,value Any Matlab “patch” property.
OUTPUT s A structure that can be passed to the Matlab "patch" command.

Any specified property value pair will overrule or add a field in this
structure.

s
+----XData (double)
+----YData (double)
+----FaceColor (char array)
+----HitTest (char array)
+----LineWidth (double)

SEE ALSO patch, lm_lineprops

4.22 lm_pixelsize

SUMMARY Get pixelsize of frame.
CALL pixelsize = lm_pixelsize(hframe)
INPUT hframe Frame handle.
OUTPUT pixelsize Vector [height, width] with the pixelsize of the frame.

4.23 lm_resize

SUMMARY Resize the figure and (re)position all the objects it contains.
CALL lm_resize(hfig, event)
INPUT hfig Handle of the figure to be resized.

event Standard Matlab callback argument, not used. This argument makes it
possible to define lm_resize as a callback function.

OUTPUT All frames created with lm_createframe and all the objects linked to these frames with
lm_linkobj are (re)positioned in the figure.

4.24 lm_shiftrank

SUMMARY Change the rank of a frame. If the “splithor” property of the parent frame is set to
true this causes the frame to move to the left or right, or up or down if this property
is set to false.

CALL hchange = mbdshiftrank(option, resize)

29

Modelit Layout Manager for Matlab

INPUT option String with shift direction, possible values:
• “up” increase rank of frame;
• “down” decrease rank of frame.

resize Boolean, if true call lm_resize afterwards
OUTPUT hchange Handles of the frames whose position has changed.
REMARK The handle of the frame for which the rank must be changed must be stored in the

userdata field of the uicontrol whose callback is executed.

4.25 lm_sortframes

SUMMARY Create a sorted list of frames which are create with lm_createframe, the frames are
sorted based on level in the hierarchy, parent and rank.

CALL [FrameData, parentIndex] = lm_sortframes(hfig)
INPUT hfig Figure handle.
OUTPUT FrameData Structarray with collected information per frame

 +----stack[]: debug information
 | +----file (char array)
 | +----name (char array)
 | +----line (double)
 +----treetop (logical)
 +----parenthandle (double)
 +----rank (double)
 +----normsize (double array)
 +----pixelsize (double array)
 +----maxpixelsize (double array)
 +----normposition (double array)
 +----pixelposition (double array)
 +----enable (logical)
 +----splithor (double)
 +----border (double)
 +----exitbutton (logical)
 +----exitfunction (char)
 +----active (logical)
 +----exitbuttonhandle (double)
 +----minmarges (double array)
 +----children (double)
 +----textchildren (double)
 +----javachildren (double)
 +----uichildren (double)
 +----slider (double)
 +----patchhandle (double)
 +----linehandle (double)
 +----shadowlinehandle (double)
 +----level (double)
 +----showslider (double)
 +----handle (double)
 +----inborderpos (double)
 +----outborderpos (double)
 +----activenode (double)
 +----enablednode (logical)

parentIndex List with the parent indices corresponding to each element in
FrameData.

30

Modelit Layout Manager for Matlab

4.26 lm_title

SUMMARY Set or get the title of a frame.
CALL h = lm_title(hframe)

h = lm_title(hframe, str, varargin)
INPUT hframe Handle of frame.

str Title to be displayed in frame.
varargin Valid property-value pairs for a uicontrol of style “text”.

OUTPUT h Handle to title object (uicontrol of style “text”).

31

	1Introduction
	1.1Introducing the Modelit Layout Manager for Matlab
	1.1.1Gui's en Guide
	1.1.2Complex GUI's: Layout Manager
	1.1.3Layout Manager features

	1.2Comparison with the Matlab uipanel object
	1.3Help
	1.4System requirements
	1.5How to proceed from here

	2Installation
	3Getting started with the Layout Manager
	3.1Step 1: Positioning frames
	3.1.1A GUI example
	3.1.2Creating the GUI example
	3.1.3Specifying frame attributes: lm_createframe

	3.2Step 2: Positioning objects in a frame
	3.2.1Specifying object attributes: lm_linkobj and lm_arrange

	3.3Summary

	4Layout Manager Reference Manual
	4.1lm_arrange
	4.2lm_childframes
	4.3lm_createframe
	4.4lm_deleteframe
	4.5lm_deleteframecontent
	4.6lm_divider
	4.7lm_doubleframe
	4.8lm_exitbutton
	4.9lm_enableonoff
	4.10lm_exittext
	4.11lm_framelist
	4.12lm_frameonoff
	4.13lm_initaxes
	4.14lm_innerpixelsize
	4.15lm_isparent
	4.16lm_lineprops
	4.17lm_linkobj
	4.18lm_linkslider2frame
	4.19lm_listframeHandles
	4.20lm_parentframe
	4.21lm_patchprops
	4.22lm_pixelsize
	4.23lm_resize
	4.24lm_shiftrank
	4.25lm_sortframes
	4.26lm_title

